Bullmore E, Brammer M, Williams S C, Rabe-Hesketh S, Janot N, David A, Mellers J, Howard R, Sham P
Department of Biostatistics & Computing, Institute of Psychiatry, Maudsley Hospital, London, United Kingdom.
Magn Reson Med. 1996 Feb;35(2):261-77. doi: 10.1002/mrm.1910350219.
Two questions arising in the analysis of functional magnetic resonance imaging (fMRI) data acquired during periodic sensory stimulation are: i) how to measure the experimentally determined effect in fMRI time series; and ii) how to decide whether an apparent effect is significant. Our approach is first to fit a time series regression model, including sine and cosine terms at the (fundamental) frequency of experimental stimulation, by pseudogeneralized least squares (PGLS) at each pixel of an image. Sinusoidal modeling takes account of locally variable hemodynamic delay and dispersion, and PGLS fitting corrects for residual or endogenous autocorrelation in fMRI time series, to yield best unbiased estimates of the amplitudes of the sine and cosine terms at fundamental frequency; from these parameters the authors derive estimates of experimentally determined power and its standard error. Randomization testing is then used to create inferential brain activation maps (BAMs) of pixels significantly activated by the experimental stimulus. The methods are illustrated by application to data acquired from normal human subjects during periodic visual and auditory stimulation.
在分析周期性感觉刺激期间获取的功能磁共振成像(fMRI)数据时出现的两个问题是:i)如何测量fMRI时间序列中实验确定的效应;以及ii)如何确定明显的效应是否显著。我们的方法是首先在图像的每个像素处通过伪广义最小二乘法(PGLS)拟合一个时间序列回归模型,该模型包括实验刺激(基频)的正弦和余弦项。正弦建模考虑了局部可变的血液动力学延迟和离散,并且PGLS拟合校正了fMRI时间序列中的残余或内源性自相关,以产生基频处正弦和余弦项幅度的最佳无偏估计;作者从这些参数中得出实验确定的功率及其标准误差的估计值。然后使用随机化测试来创建由实验刺激显著激活的像素的推断性脑激活图(BAM)。通过将这些方法应用于从正常人类受试者在周期性视觉和听觉刺激期间获取的数据来说明这些方法。