Golub E I, Glazer P M, Ward D C, Radding C M
Yale University School of Medicine, Department of Genetics, New Haven, CT 06510, USA.
Mutat Res. 1996 Apr 13;351(2):117-24. doi: 10.1016/0027-5107(95)00212-x.
RecA protein can polymerize on an oligodeoxyribonucleotide to form a filament that finds its homologous sequence in double-stranded DNA. When such an oligonucleotide is linked to psoralen, a photoactivatable DNA intercalator, it irreversibly binds to the homologous site in double stranded DNA as a result of psoralen photoadduct formation at thymidines. The relative efficiency of specific vs. nonspecific binding of an oligonucleotide depended upon the ratio of psoralenated oligonucleotide to total DNA. Na+ ions at concentrations greater than 50 mM eliminated specific binding. Under optimal conditions. the probability of binding of an 80-mer oligonucleotide to a specific site was > 10(5) times greater than that of binding to any single nonspecific site. Under the conditions described, RecA-mediated photoadduction was equally efficient with superhelical and linear double-stranded DNA.