Suppr超能文献

果蝇热休克因子(HSF)的C末端区域包含一个组成型功能性反式激活结构域。

The C-terminal region of Drosophila heat shock factor (HSF) contains a constitutively functional transactivation domain.

作者信息

Wisniewski J, Orosz A, Allada R, Wu C

机构信息

Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Nucleic Acids Res. 1996 Jan 15;24(2):367-74. doi: 10.1093/nar/24.2.367.

Abstract

The heat shock transcription factor (HSF) is constitutively expressed in Drosophila cells as an inactive monomer. Upon heat shock HSF undergoes trimerization and acquires high affinity DNA binding ability leading to specific interaction with its cognate elements in heat shock promoters. Here we show that the transactivation function of HSF is conferred by the extreme C-terminal region of the protein. Deletion analysis of HSF fragments fused to the GAL4 DNA-binding domain demonstrates that transactivation is dependent on HSF residues 610-691. This domain is located beyond the C-terminal heptad repeat (leucine zipper 4) whose presence or integrity is dispensable for transactivation. The transactivation domain is functional in the absence of heat shock and can be replaced by the extreme C-terminal region of human HSF1. The Drosophila and human HSF transactivation domains are both rich in hydrophobic and acidic residues and may be structurally conserved, despite limited sequence identity.

摘要

热休克转录因子(HSF)在果蝇细胞中以无活性的单体形式组成性表达。热休克时,HSF发生三聚化并获得高亲和力DNA结合能力,从而与热休克启动子中的同源元件发生特异性相互作用。在此我们表明,HSF的反式激活功能由该蛋白的极端C末端区域赋予。对与GAL4 DNA结合结构域融合的HSF片段进行缺失分析表明,反式激活依赖于HSF的610 - 691位残基。该结构域位于C末端七肽重复序列(亮氨酸拉链4)之外,其存在或完整性对于反式激活并非必需。反式激活结构域在无热休克时具有功能,并且可以被人HSF1的极端C末端区域替代。果蝇和人HSF的反式激活结构域都富含疏水和酸性残基,尽管序列一致性有限,但在结构上可能是保守的。

相似文献

2
Regulatory domain of human heat shock transcription factor-2 is not regulated by hemin or heat shock.
J Cell Biochem. 1999 Apr 1;73(1):56-69. doi: 10.1002/(sici)1097-4644(19990401)73:1<56::aid-jcb7>3.0.co;2-7.
4
The C-terminal hydrophobic repeat of Schizosaccharomyces pombe heat shock factor is not required for heat-induced DNA-binding.
Yeast. 1998 Jun 15;14(8):733-46. doi: 10.1002/(SICI)1097-0061(19980615)14:8<733::AID-YEA270>3.0.CO;2-8.
7
Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor.
Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1200-5. doi: 10.1073/pnas.032681299. Epub 2002 Jan 29.
9
Modulation of human heat shock factor trimerization by the linker domain.
J Biol Chem. 1999 Jun 11;274(24):17219-25. doi: 10.1074/jbc.274.24.17219.
10
Arabidopsis heat shock factor is constitutively active in Drosophila and human cells.
Mol Gen Genet. 1995 Jul 28;248(2):136-41. doi: 10.1007/BF02190794.

引用本文的文献

1
Proteotoxic stress response in atherosclerotic cardiovascular disease: Emerging role of heat shock factor 1.
Front Cardiovasc Med. 2023 Apr 3;10:1155444. doi: 10.3389/fcvm.2023.1155444. eCollection 2023.
2
A De Novo Transcriptome Analysis Identifies Cold-Responsive Genes in the Seeds of (DC.) Danser.
Biomed Res Int. 2022 Jul 6;2022:9247169. doi: 10.1155/2022/9247169. eCollection 2022.
3
The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response.
Arch Toxicol. 2021 Jun;95(6):1943-1970. doi: 10.1007/s00204-021-03070-8. Epub 2021 May 18.
6
Cooption of heat shock regulatory system for anhydrobiosis in the sleeping chironomid .
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2477-E2486. doi: 10.1073/pnas.1719493115. Epub 2018 Feb 20.
7
Optimized strategy for in vivo Cas9-activation in .
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):9409-9414. doi: 10.1073/pnas.1707635114. Epub 2017 Aug 14.
8
Metabolic control of the proteotoxic stress response: implications in diabetes mellitus and neurodegenerative disorders.
Cell Mol Life Sci. 2016 Nov;73(22):4231-4248. doi: 10.1007/s00018-016-2291-1. Epub 2016 Jun 11.
10
De novo transcriptome profiling of cold-stressed siliques during pod filling stages in Indian mustard (Brassica juncea L.).
Front Plant Sci. 2015 Oct 30;6:932. doi: 10.3389/fpls.2015.00932. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验