Campuzano V, Galland P, Alvarez M I, Eslava A P
Departamento de Microbiología y Genetica, Universidad de Salamanca, Spain.
Photochem Photobiol. 1996 May;63(5):686-94. doi: 10.1111/j.1751-1097.1996.tb05674.x.
Light, gravity and ethylene represent for plants and fungi important environment cues for spatial orientation and growth regulation. Coordination of the frequently conflicting stimuli requires signal-integration sites, which, however, remain largely unidentified. The genetic and physiological basis for signal integration was investigated with a set of phototropism mutants (genotype mad) of the UV- and blue-light-sensitive fungus Phycomyces blakesleeanus, which responds also to gravity, ethylene and nearby obstacles (autochemotropism or avoidance response). Both, class 1 and class 2 mutants display a reduced sensitivity to visible light. Class 1 mutants with defects in genes madA, B, C, I have preserved their sensitivity to gravity and ethylene, whereas class 2 mutants with defects in genes madD,E,F,G,J have lost it. We found that the phototropic sensitivity of class 1 mutants is affected roughly to the same extent in far UV and blue light. In contrast, the sensitivity loss of class 2 mutants is restricted mainly to the near-UV and the blue-light region, whereas the sensitivity to far UV is only mildly affected. This behavior of the class 2 mutants indicates that different photoreceptors mediate phototropism in far-UV and in near-UV/ blue light. The photogravitropic action spectra for two class 2 mutants with defects in genes madF and madJ display distortions between 342 and 530 nm and a bathochromic shift relative to the action spectrum of the wild type. These features indicate that the madF and madJ mutants are affected at the level of the blue-light photoreceptor system. As an implication we infer that an intact near-UV/blue-light photoreceptor system is required even in darkness for negative gravitropism, the ethylene response and autochemotropism. In Phycomyces, signal integration occurs, at least in part, at the level of the near-UV/blue-light photoreceptor system.
光、重力和乙烯对植物和真菌而言,是空间定向和生长调节的重要环境信号。要协调这些常常相互冲突的刺激,需要信号整合位点,但目前这些位点在很大程度上仍未明确。我们利用对紫外线和蓝光敏感的真菌米根霉的一组向光性突变体(基因型mad),研究了信号整合的遗传和生理基础,该真菌对重力、乙烯和附近障碍物也有反应(自身化学otropism或回避反应)。1类和2类突变体对可见光的敏感性均降低。基因madA、B、C、I有缺陷的1类突变体仍保留对重力和乙烯的敏感性,而基因madD、E、F、G、J有缺陷的2类突变体则丧失了这种敏感性。我们发现,1类突变体在远紫外线和蓝光下的向光敏感性受到的影响大致相同。相比之下,2类突变体的敏感性丧失主要局限于近紫外线和蓝光区域,而对远紫外线的敏感性仅受到轻微影响。2类突变体的这种行为表明,不同的光感受器介导远紫外线和近紫外线/蓝光下的向光性。两个基因madF和madJ有缺陷的2类突变体的光重力作用光谱在342至530纳米之间出现畸变,相对于野生型的作用光谱发生红移。这些特征表明,madF和madJ突变体在蓝光光感受器系统水平受到影响。由此我们推断,即使在黑暗中,完整的近紫外线/蓝光光感受器系统对于负重力性、乙烯反应和自身化学otropism也是必需的。在米根霉中,信号整合至少部分发生在近紫外线/蓝光光感受器系统水平。