Suppr超能文献

Renal vascular reactivity to ATP in hyper- and hypothyroid rats.

作者信息

Vargas F, Osuna A, Fernandez-Rivas A

机构信息

Departamento de Fisiología, Facultad de Medicina, Granada, Spain.

出版信息

Experientia. 1996 Mar 15;52(3):225-9. doi: 10.1007/BF01920711.

Abstract

The effects of adenosine triphosphate (ATP) on the renal vasculature of isolated kidneys from control, hyper- and hypothyroid rats were characterized. ATP responsiveness was evaluated in basal tone and in raised tone (phenylephrine 10(-6) M) preparations. These responses were compared with those obtained with barium chloride or sodium nitroprusside (SNP), used respectively as nonreceptor agonist for vasoconstriction or vasodilation. In preparations at basal tone, ATP produced dose-related vasoconstriction, which was increased in hyperthyroid kidneys, and was severely attenuated in kidneys from hypothyroid rats. In raised tone preparations from control rats ATP produced a dual response: vasoconstriction at low doses, which declined with increasing doses to give way to vasodilator responses; biphasic responses were found in some kidneys. Hyperthyroid kidneys showed increased pressor responses and a vasodilator response similar to those seen in kidneys from control rats. However, in hypothyroid kidneys the vasodilator response was abolished. The responses to barium chloride and to SNP were significantly increased and decreased in hyper- and hypothyroid kidneys, respectively; vasoconstrictor responses to SNP were also found in hypothyroid kidneys. Hence the abnormal responses to ATP observed in both thyroid dysfunctions may be partially explained by unspecific alterations in the contractile machinery of the renal vasculature in these kidneys. However, ATP responsiveness (vasoconstriction at low tone and vasodilation at raised tone) was more severly affected in hypothyroid kidneys, suggesting that purinergic (P2X and P2Y) receptor activity may be decreased in these organs.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验