Pérez-Alvarado G C, Kosa J L, Louis H A, Beckerle M C, Winge D R, Summers M F
Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Maryland Baltimore County 21228, USA.
J Mol Biol. 1996 Mar 22;257(1):153-74. doi: 10.1006/jmbi.1996.0153.
LIM domains are Zn-binding arrays found in a number of proteins involved in the control of cell differentiation, including several developmentally regulated transcription factors and a human proto-oncogene product. The rat cysteine-rich intestinal protein, CRIP, is a 76-residue polypeptide which contains a LIM motif. The solution structure of CRIP has been determined by homonuclear and 1H-15N heteronuclear correlated nuclear magnetic resonance spectroscopy. Structures with individual distance violations of < or = 0.03 angstrom and penalties (squared sum of distance violations) of < or = 0.06 angstrom2 were generated with a total of 500 nuclear Overhauser effect (NOE)-derived distance restraints (averaging 15.6 restraints per refined residue). Superposition of backbone heavy atoms of ordered residues relative to mean atom positions is achieved with pairwise rms deviations of 0.54(+/-0.14) angstrom. As observed previously for a peptide with the sequence of the C-terminal LIM domain from the avian cysteine-rich protein, CRP (cCRP-LIM2), CRIP binds two equivalents of zinc, forming N-terminal CCHC (Cys3, Cys6, His24, Cys27) and C-terminal CCCC (Cys30, Cys33, Cys51, Cys55) modules. The CCHC and CCCC modules in CRIP contain two orthogonally-arrayed antiparallel beta-sheets. The C-terminal end of the CCHC module contains a tight turn and the C terminus of the CCCC module forms an alpha-helix. The modules pack via hydrophobic interactions, forming a compact structure that is similar to that observed for cCRP-LIM2. The most significant differences between the structures occur at the CCHC module-CCCC module interface, which results in a difference in the relative orientations of the modules, and at the C terminus where the alpha-helix appears to be packed more tightly against the preceding antiparallel beta-sheet. The greater abundance of NOE information obtained for CRIP relative to cCRP-LIM2, combined with the analysis of J-coupling and proton chemical shift data, have allowed a more detailed evaluation of the molecular level interactions that stabilize the fold of the LIM motif.
LIM结构域是在许多参与细胞分化控制的蛋白质中发现的锌结合阵列,包括几种发育调控的转录因子和一种人类原癌基因产物。大鼠富含半胱氨酸的肠道蛋白CRIP是一种含有76个残基的多肽,其中包含一个LIM基序。CRIP的溶液结构已通过同核和1H-15N异核相关核磁共振光谱确定。生成了个体距离偏差小于或等于0.03埃且惩罚值(距离偏差的平方和)小于或等于0.06埃2的结构,总共使用了500个基于核Overhauser效应(NOE)的距离约束(每个精制残基平均15.6个约束)。相对于平均原子位置,有序残基的主链重原子的叠加实现了成对均方根偏差为0.54(±0.14)埃。如先前在具有来自禽类富含半胱氨酸蛋白CRP(cCRP-LIM2)的C末端LIM结构域序列的肽中所观察到的,CRIP结合两个当量的锌,形成N末端CCHC(半胱氨酸3、半胱氨酸6、组氨酸24、半胱氨酸27)和C末端CCCC(半胱氨酸30、半胱氨酸33、半胱氨酸51、半胱氨酸55)模块。CRIP中的CCHC和CCCC模块包含两个正交排列的反平行β-折叠。CCHC模块的C末端包含一个紧密转角,CCCC模块的C末端形成一个α-螺旋。这些模块通过疏水相互作用堆积,形成一种紧凑结构,类似于在cCRP-LIM2中观察到的结构。结构之间最显著的差异发生在CCHC模块-CCCC模块界面,这导致模块的相对取向不同,并且在C末端,α-螺旋似乎更紧密地堆积在前一个反平行β-折叠上。相对于cCRP-LIM2,CRIP获得的NOE信息更加丰富,再结合J-耦合和质子化学位移数据的分析,使得能够更详细地评估稳定LIM基序折叠的分子水平相互作用。