Suppr超能文献

唇部运动的功能数据分析。

Functional data analyses of lip motion.

作者信息

Ramsay J O, Munhall K G, Gracco V L, Ostry D J

机构信息

McGill University, Montreal, Quebec, Canada.

出版信息

J Acoust Soc Am. 1996 Jun;99(6):3718-27. doi: 10.1121/1.414986.

Abstract

The vocal tract's motion during speech is a complex patterning of the movement of many different articulators according to many different time functions. Understanding this myriad of gestures is important to a number of different disciplines including automatic speech recognition, speech and language pathologies, speech motor control, and experimental phonetics. Central issues are the accurate description of the shape of the vocal tract and determining how each articulator contributes to this shape. A problem facing all of these research areas is how to cope with the multivariate data from speech production experiments. In this paper techniques are described that provide useful tools for describing multivariate functional data such as the measurement of speech movements. The choice of data analysis procedures has been motivated by the need to partition the articulator movement in various ways: end effects separated from shape effects, partitioning of syllable effects, and the splitting of variation within an articulator site from variation from between sites. The techniques of functional data analysis seem admirably suited to the analyses of phenomena such as these. Familiar multivariate procedures such as analysis of variance and principal components analysis have their functional counterparts, and these reveal in a way more suited to the data the important sources of variation in lip motion. Finally, it is found that the analyses of acceleration were especially helpful in suggesting possible control mechanisms. The focus is on using these speech production data to understand the basic principles of coordination. However, it is believed that the tools will have a more general use.

摘要

在言语过程中,声道的运动是许多不同发音器官依据许多不同时间函数进行运动的复杂模式。理解这无数的手势对于包括自动语音识别、言语和语言病理学、言语运动控制以及实验语音学在内的许多不同学科都很重要。核心问题是准确描述声道的形状以及确定每个发音器官如何对这种形状做出贡献。所有这些研究领域面临的一个问题是如何处理来自言语产生实验的多变量数据。本文描述了一些技术,这些技术为描述多变量功能数据(如言语运动的测量)提供了有用的工具。数据分析程序的选择是出于以各种方式划分发音器官运动的需要:将末端效应与形状效应分开、划分音节效应以及将发音器官部位内的变化与部位间的变化分开。功能数据分析技术似乎非常适合分析此类现象。熟悉的多变量程序(如方差分析和主成分分析)有其功能对应物,这些对应物以更适合数据的方式揭示了嘴唇运动变化的重要来源。最后,发现加速度分析在提示可能的控制机制方面特别有帮助。重点是利用这些言语产生数据来理解协调的基本原理。然而,人们认为这些工具将有更广泛的用途。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验