Suppr超能文献

空气中化学物质混合物对呼吸道影响的表征及数据的平滑多项式样条分析。

Characterization of the effects of an airborne mixture of chemicals on the respiratory tract and smoothing polynomial spline analysis of the data.

作者信息

Boylstein L A, Anderson S J, Thompson R D, Alarie Y

机构信息

Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, PA 15238, USA.

出版信息

Arch Toxicol. 1995;69(9):579-89. doi: 10.1007/s002040050217.

Abstract

We expanded a previously published (Vijayaraghavan et al. 1994) computerized system to analyze the breathing pattern of unanesthetized mice in order better to recognize and quantify the effects of an airborne mixture of chemicals at three different levels of the respiratory tract. The airborne chemical mixture used was a machining fluid. Such fluids are widely used in industry and a large number of workers are exposed to these airborne mixtures. We found this mixture to be capable of inducing three types of effects on the respiratory tract: sensory irritation of the upper respiratory tract (S), airflow limitation along the conducting airways (A) and pulmonary irritation (P). Depending upon the exposure concentration, mainly S or P effects were obtained but an A effect was also identified. The three types of effects occurred at various times during the exposures and, furthermore, within a group of exposed animals some exhibited one type of effect while others exhibited another type. In order to analyze such complex data sets, two statistical methods for smoothing polynomial splines were utilized: the maximum likelihood (ML) method and generalized cross validation (GCV) method. The results indicated the previous methods used to characterize a single effect of airborne chemicals can now be extended to evaluate mixtures likely to induce multiple types of effects. However, statistical analysis methods, either the ML or GCV methods, or other appropriate methods are needed to evaluate the responses obtained due to the complex effects that a mixture can induce in comparison to single chemicals.

摘要

我们扩展了一个先前发表的(Vijayaraghavan等人,1994年)计算机系统,以分析未麻醉小鼠的呼吸模式,以便更好地识别和量化呼吸道三个不同水平上空气中化学物质混合物的影响。所使用的空气中化学物质混合物是一种加工液。此类液体在工业中广泛使用,大量工人接触这些空气中的混合物。我们发现这种混合物能够对呼吸道产生三种类型的影响:上呼吸道的感觉刺激(S)、沿传导气道的气流受限(A)和肺部刺激(P)。根据暴露浓度,主要获得S或P效应,但也识别出A效应。这三种类型的效应在暴露期间的不同时间出现,此外,在一组暴露动物中,一些表现出一种类型的效应,而另一些表现出另一种类型的效应。为了分析如此复杂的数据集,采用了两种平滑多项式样条的统计方法:最大似然(ML)法和广义交叉验证(GCV)法。结果表明,以前用于表征空气中化学物质单一效应的方法现在可以扩展到评估可能诱导多种效应的混合物。然而,需要统计分析方法,无论是ML法还是GCV法,或其他适当的方法,来评估由于混合物与单一化学物质相比可能诱导的复杂效应而获得的反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验