Suppr超能文献

Effects of wall shear stress and fluid recirculation on the localization of circulating monocytes in a three-dimensional flow model.

作者信息

Pritchard W F, Davies P F, Derafshi Z, Polacek D C, Tsao R, Dull R O, Jones S A, Giddens D P

机构信息

Laboratory of Diagnostic Radiology Research, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

J Biomech. 1995 Dec;28(12):1459-69. doi: 10.1016/0021-9290(95)00094-1.

Abstract

There is a correlation between the location of early atherosclerotic lesions and the hemodynamic characteristics at those sites. Circulating monocytes are key cells in the pathogenesis of atherosclerotic plaques and localize at sites of atherogenesis. The hypothesis that the distribution of monocyte adhesion to the vascular wall is determined in part by hemodynamic factors was addressed by studying monocyte adhesion in an in vitro flow model in the absence of any biological activity in the model wall. Suspensions of U937 cells were perfused (Re = 200) through an axisymmetric silicone flow model with a stenosis followed by a reverse step. The model provided spatially varying wall shear stress, flow separation and reattachment, and a three-dimensional flow pattern. The cell rolling velocity and adhesion rates were determined by analysis of videomicrographs. Wall shear stress was obtained by numerical solution of the equations of fluid motion. Cell adhesion patterns were also studied in the presence of chemotactic peptide gradients. The cell rolling velocity varied linearly with wall shear stress. The adhesion rate tended to decrease with increasing local wall shear stress, but was also affected by the radial component of velocity and the dynamics of the recirculation region and flow reattachment. Adhesion was increased in the vicinity of chemotactic peptide sources downstream of the expansion site. Results with human monocytes were qualitatively similar to the U937 experiments. Differences in the adhesion rates of U937 cells occurring solely as a function of the fluid dynamic properties of the flow field were clearly demonstrated in the absence of any biological activity in the model wall.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验