Miller K E, Joshi H C
Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
J Cell Biol. 1996 Jun;133(6):1355-66. doi: 10.1083/jcb.133.6.1355.
A question of broad importance in cellular neurobiology has been, how is microtubule cytoskeleton of the axon organized? It is of particular interest because of the history of conflicting results concerning the form in which tubulin is transported in the axon. While many studies indicate a stationary nature of axonal microtubules, a recent series of experiments reports that microtubules are recruited into axons of neurons grown in the presence of a microtubule-inhibitor, vinblastine (Baas, P.W., and F.J. Ahmad. 1993.J. Cell Biol. 120:1427-1437: Ahmad F.J., and P.W. Baas. 1995. J. Cell Sci, 108:2761-2769; Sharp, D.J., W. Yu, and P.W. Baas. 1995. J. Cell Biol, 130:93-103; Yu, W., and P.W. Baas. 1995. J. Neurosci. 15:6827-6833.). Since vinblastine stabilizes bulk microtubule-dynamics in vitro, it was concluded that preformed microtubules moved into newly grown axons. By visualizing the polymerization of injected fluorescent tubulin, we show that substantial microtubule polymerization occurs in neurons grown at reported vinblastine concentrations. Vinblastine inhibits, in a concentration-dependent manner, both neurite outgrowth and microtubule assembly. More importantly, the neuron growth conditions of low vinblastine concentration allowed us to visualize the footprints of the tubulin wave as it polymerized and depolymerized during its slow axonal transport. In contrast, depolymerization resistant fluorescent microtubules did not move when injected in neurons. We show that tubulin subunits, not microtubules, are the primary form of tubulin transport in neurons.
细胞神经生物学中一个具有广泛重要性的问题是,轴突的微管细胞骨架是如何组织的?由于关于微管蛋白在轴突中运输形式的研究结果一直相互矛盾,这个问题尤其引人关注。虽然许多研究表明轴突微管具有静止的性质,但最近一系列实验报告称,在微管抑制剂长春花碱存在的情况下生长的神经元轴突中会招募微管(巴斯,P.W.,和F.J.艾哈迈德。1993.《细胞生物学杂志》120:1427 - 1437;艾哈迈德F.J.,和P.W.巴斯。1995.《细胞科学杂志》108:2761 - 2769;夏普,D.J.,W.于,和P.W.巴斯。1995.《细胞生物学杂志》130:93 - 103;于,W.,和P.W.巴斯。1995.《神经科学杂志》15:6827 - 6833)。由于长春花碱在体外能稳定大量微管的动力学,因此得出结论,预先形成的微管会移入新生长的轴突中。通过观察注射的荧光微管蛋白的聚合过程,我们发现,在报道的长春花碱浓度下生长的神经元中会发生大量微管聚合。长春花碱以浓度依赖的方式抑制神经突生长和微管组装。更重要的是,低长春花碱浓度的神经元生长条件使我们能够观察到微管蛋白波在缓慢轴突运输过程中聚合和解聚时的踪迹。相比之下,抗解聚的荧光微管注射到神经元中时不会移动。我们表明,微管蛋白亚基而非微管是神经元中微管蛋白运输的主要形式。