Suppr超能文献

铁蛋白:分子特性、铁储存功能及细胞调节

The ferritins: molecular properties, iron storage function and cellular regulation.

作者信息

Harrison P M, Arosio P

机构信息

Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, UK.

出版信息

Biochim Biophys Acta. 1996 Jul 31;1275(3):161-203. doi: 10.1016/0005-2728(96)00022-9.

Abstract

The iron storage protein, ferritin, plays a key role in iron metabolism. Its ability to sequester the element gives ferritin the dual functions of iron detoxification and iron reserve. The importance of these functions is emphasised by ferritin's ubiquitous distribution among living species. Ferritin's three-dimensional structure is highly conserved. All ferritins have 24 protein subunits arranged in 432 symmetry to give a hollow shell with an 80 A diameter cavity capable of storing up to 4500 Fe(III) atoms as an inorganic complex. Subunits are folded as 4-helix bundles each having a fifth short helix at roughly 60 degrees to the bundle axis. Structural features of ferritins from humans, horse, bullfrog and bacteria are described: all have essentially the same architecture in spite of large variations in primary structure (amino acid sequence identities can be as low as 14%) and the presence in some bacterial ferritins of haem groups. Ferritin molecules isolated from vertebrates are composed of two types of subunit (H and L), whereas those from plants and bacteria contain only H-type chains, where 'H-type' is associated with the presence of centres catalysing the oxidation of two Fe(II) atoms. The similarity between the dinuclear iron centres of ferritin H-chains and those of ribonucleotide reductase and other proteins suggests a possible wider evolutionary linkage. A great deal of research effort is now concentrated on two aspects of ferritin: its functional mechanisms and its regulation. These form the major part of the review. Steps in iron storage within ferritin molecules consist of Fe(II) oxidation, Fe(III) migration and the nucleation and growth of the iron core mineral. H-chains are important for Fe(II) oxidation and L-chains assist in core formation. Iron mobilisation, relevant to ferritin's role as iron reserve, is also discussed. Translational regulation of mammalian ferritin synthesis in response to iron and the apparent links between iron and citrate metabolism through a single molecule with dual function are described. The molecule, when binding a [4Fe-4S] cluster, is a functioning (cytoplasmic) aconitase. When cellular iron is low, loss of the [4Fe-4S] cluster allows the molecule to bind to the 5'-untranslated region (5'-UTR) of the ferritin m-RNA and thus to repress translation. In this form it is known as the iron regulatory protein (IRP) and the stem-loop RNA structure to which it binds is the iron regulatory element (IRE). IREs are found in the 3'-UTR of the transferrin receptor and in the 5'-UTR of erythroid aminolaevulinic acid synthase, enabling tight co-ordination between cellular iron uptake and the synthesis of ferritin and haem. Degradation of ferritin could potentially lead to an increase in toxicity due to uncontrolled release of iron. Degradation within membrane-encapsulated "secondary lysosomes' may avoid this problem and this seems to be the origin of another form of storage iron known as haemosiderin. However, in certain pathological states, massive deposits of "haemosiderin' are found which do not arise directly from ferritin breakdown. Understanding the numerous inter-relationships between the various intracellular iron complexes presents a major challenge.

摘要

铁储存蛋白——铁蛋白,在铁代谢中起关键作用。其螯合元素的能力赋予了铁蛋白铁解毒和铁储备的双重功能。铁蛋白在生物物种中的广泛分布凸显了这些功能的重要性。铁蛋白的三维结构高度保守。所有铁蛋白都有24个蛋白质亚基,以432对称排列,形成一个中空的壳,其直径80 Å的腔内能够储存多达4500个Fe(III)原子,形成无机复合物。亚基折叠成4螺旋束,每个螺旋束在与束轴大致60度的位置有第五个短螺旋。本文描述了来自人类、马、牛蛙和细菌的铁蛋白的结构特征:尽管一级结构(氨基酸序列同一性可低至14%)存在很大差异,且一些细菌铁蛋白中存在血红素基团,但它们的基本结构基本相同。从脊椎动物中分离出的铁蛋白分子由两种类型的亚基(H和L)组成,而来自植物和细菌的铁蛋白仅包含H型链,其中“H型”与催化两个Fe(II)原子氧化的中心的存在有关。铁蛋白H链的双核铁中心与核糖核苷酸还原酶和其他蛋白质的双核铁中心之间的相似性表明可能存在更广泛的进化联系。现在大量的研究工作集中在铁蛋白的两个方面:其功能机制及其调节。这些构成了综述的主要部分。铁蛋白分子中铁储存的步骤包括Fe(II)氧化、Fe(III)迁移以及铁芯矿物质的成核和生长。H链对Fe(II)氧化很重要,而L链有助于核心形成。还讨论了与铁蛋白作为铁储备的作用相关的铁动员。描述了哺乳动物铁蛋白合成对铁的翻译调控以及通过具有双重功能的单个分子在铁与柠檬酸代谢之间的明显联系。该分子在结合[4Fe - 4S]簇时是一种有功能的(细胞质)乌头酸酶。当细胞内铁含量低时,[4Fe - 4S]簇的丢失使该分子能够与铁蛋白mRNA的5'非翻译区(5'-UTR)结合,从而抑制翻译。以这种形式它被称为铁调节蛋白(IRP),它所结合的茎环RNA结构是铁调节元件(IRE)。IREs存在于转铁蛋白受体的3'-UTR以及红细胞δ-氨基乙酰丙酸合酶的5'-UTR中,从而实现细胞铁摄取与铁蛋白和血红素合成之间的紧密协调。铁蛋白的降解可能由于铁的无控制释放而导致毒性增加。在膜包裹的“次级溶酶体”内的降解可能避免这个问题,这似乎是另一种储存铁形式——血铁黄素的起源。然而,在某些病理状态下,会发现大量的“血铁黄素”沉积,它们并非直接由铁蛋白分解产生。理解各种细胞内铁复合物之间众多的相互关系是一项重大挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验