Conturo T E, McKinstry R C, Akbudak E, Robinson B H
Mallinckrodt Institute of Radiology, Neuroimaging Laboratory, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Magn Reson Med. 1996 Mar;35(3):399-412. doi: 10.1002/mrm.1910350319.
A diffusion imaging method with a tetrahedral sampling pattern has been developed for high-sensitivity diffusion analysis. The tetrahedral gradient pattern consists of four different combinations of x, y, and z gradients applied simultaneously at full strength to uniformly measure diffusion in four different directions. Signal-to-noise can be increased by up to a factor of about three using this approach, compared with diffusion measurements made using separately applied x, y, and z gradients. A mathematical formalism is presented describing six fundamental parameters: the directionally averaged diffusion coefficient D and diffusion element anisotropies eta and epsilon which are rotationally invariant, and diffusion ellipsoid orientation angles theta, phi, and omega which are rotationally variant. These six parameters contain all the information in the symmetric diffusion tensor D. Principal diffusion coefficients, reduced anisotropies, and other rotational invariants are further defined. It is shown that measurement of off-diagonal tensor elements is essential to assess anisotropy and orientation, and that the only parameter which can be measured with the orthogonal method is D. In cases of axial diffusion symmetry (e.g., fibers), the four tetrahedral diffusion measurements efficiently enable determination of D, eta, theta, and phi which contain all the diffusion information. From these four parameters, the diffusion parallel and perpendicular to the symmetry axis (D and D) and the axial anisotropy A can be determined. In more general cases, the six fundamental parameters can be determined with two additional diffusion measurements. Tetrahedral diffusion sequences were implemented on a clinical MR system. A muscle phantom demonstrates orientation independence of D, D, D, and A for large changes in orientation angles. Sample background gradients and diffusion gradient imbalances were directly measured and found to be insignificant in most cases.
一种具有四面体采样模式的扩散成像方法已被开发用于高灵敏度扩散分析。四面体梯度模式由x、y和z梯度的四种不同组合组成,这些组合同时以全强度应用,以均匀测量四个不同方向的扩散。与使用单独应用的x、y和z梯度进行的扩散测量相比,使用这种方法可将信噪比提高约三倍。本文提出了一种数学形式,描述了六个基本参数:方向平均扩散系数D以及旋转不变的扩散元素各向异性eta和epsilon,以及旋转可变的扩散椭球取向角theta、phi和omega。这六个参数包含了对称扩散张量D中的所有信息。进一步定义了主扩散系数、约化各向异性和其他旋转不变量。结果表明,测量非对角张量元素对于评估各向异性和取向至关重要,并且用正交方法唯一可以测量的参数是D。在轴向扩散对称的情况下(例如纤维),四个四面体扩散测量有效地能够确定包含所有扩散信息的D、eta、theta和phi。从这四个参数中,可以确定平行和垂直于对称轴的扩散(D和D)以及轴向各向异性A。在更一般的情况下,通过另外两次扩散测量可以确定六个基本参数。四面体扩散序列在临床MR系统上得以实现。一个肌肉模型展示了在取向角发生大变化时D、D、D和A的取向独立性。直接测量了样本背景梯度和扩散梯度不平衡,发现在大多数情况下它们并不显著。