Beksaç M S, Eskiizmirliler S, Cakar A N, Erkmen A M, Dağdeviren A, Lundsteen C
Department of Obstetrics and Gynecology, Hacettepe University, Ankara, Turkey.
Technol Health Care. 1996 Mar;3(4):217-29.
In this study, we introduce an expert system for intelligent chromosome recognition and classification based on artificial neural networks (ANN) and features obtained by automated image analysis techniques. A microscope equipped with a CCTV camera, integrated with an IBM-PC compatible computer environment including a frame grabber, is used for image data acquisition. Features of the chromosomes are obtained directly from the digital chromosome images. Two new algorithms for automated object detection and object skeletonizing constitute the basis of the feature extraction phase which constructs the components of the input vector to the ANN part of the system. This first version of our intelligent diagnostic system uses a trained unsupervised neural network structure and an original rule-based classification algorithm to find a karyotyped form of randomly distributed chromosomes over a complete metaphase. We investigate the effects of network parameters on the classification performance and discuss the adaptability and flexibility of the neural system in order to reach a structure giving an output including information about both structural and numerical abnormalities. Moreover, the classification performances of neural and rule-based system are compared for each class of chromosome.
在本研究中,我们介绍了一种基于人工神经网络(ANN)和通过自动图像分析技术获得的特征的智能染色体识别与分类专家系统。一台配备闭路电视摄像机的显微镜,与包括图像采集卡在内的IBM个人计算机兼容计算机环境集成,用于图像数据采集。染色体特征直接从数字染色体图像中获取。两种用于自动目标检测和目标骨架化的新算法构成了特征提取阶段的基础,该阶段构建了系统ANN部分输入向量的组件。我们智能诊断系统的第一个版本使用经过训练的无监督神经网络结构和基于原始规则的分类算法,以找到完整中期随机分布染色体的核型形式。我们研究了网络参数对分类性能的影响,并讨论了神经系统的适应性和灵活性,以实现一种能给出包含结构和数量异常信息输出的结构。此外,还比较了神经网络系统和基于规则的系统对每类染色体的分类性能。