Stanley R J, Keller J M, Gader P, Caldwell C W
University of Missouri, Department of Health Management and Informatics, Columbia 65211, USA.
IEEE Trans Med Imaging. 1998 Jun;17(3):451-62. doi: 10.1109/42.712134.
Karyotyping involves the visualization and classification of chromosomes into standard classes. In "normal" human metaphase spreads, chromosomes occur in homologous pairs for the autosomal classes 1-22, and X chromosome for females. Many existing approaches for performing automated human chromosome image analysis presuppose cell normalcy, containing 46 chromosomes within a metaphase spread with two chromosomes per class. This is an acceptable assumption for routine automated chromosome image analysis. However, many genetic abnormalities are directly linked to structural or numerical aberrations of chromosomes within the metaphase spread. Thus, two chromosomes per class cannot be assumed for anomaly analysis. This paper presents the development of image analysis techniques which are extendible to detecting numerical aberrations evolving from structural abnormalities. Specifically, an approach to identifying "normal" chromosomes from selected class(es) within a metaphase spread is presented. Chromosome assignment to a specific class is initially based on neural networks, followed by banding pattern and centromeric index criteria checking, and concluding with homologue matching. Experimental results are presented comparing neural networks as the sole classifier to our homologue matcher for identifying class 17 within normal and abnormal metaphase spreads.
核型分析涉及将染色体可视化并分类为标准类别。在“正常”人类中期染色体铺展中,常染色体类别1 - 22的染色体以同源对形式出现,女性还有两条X染色体。许多现有的进行自动人类染色体图像分析的方法都假定细胞正常,即中期染色体铺展中有46条染色体,每个类别有两条染色体。这对于常规自动染色体图像分析是一个可接受的假设。然而,许多遗传异常与中期染色体铺展中的染色体结构或数量畸变直接相关。因此,在异常分析中不能假定每个类别有两条染色体。本文介绍了图像分析技术的发展,这些技术可扩展用于检测由结构异常演变而来的数量畸变。具体而言,提出了一种从中期染色体铺展中的选定类别识别“正常”染色体的方法。染色体分配到特定类别最初基于神经网络,随后进行带型模式和着丝粒指数标准检查,最后进行同源匹配。给出了实验结果,比较了将神经网络作为唯一分类器与我们的同源匹配器在正常和异常中期染色体铺展中识别第17类染色体的情况。