Suppr超能文献

使用Choquet积分进行同源匹配。

Homologue matching using the Choquet integral.

作者信息

Stanley R J, Keller J, Gader P, Caldwell C W

机构信息

Department of Health Management and Informatics, University of Missouri, Columbia 65612, USA.

出版信息

Biomed Sci Instrum. 1997;34:315-20.

PMID:9603059
Abstract

Automated Giemsa-banded chromosome image research has been largely restricted to classification schemes associated with isolated chromosomes within metaphase spreads. In normal human metaphase spreads, there are 46 chromosomes occurring in homologous pairs for the autosomal classes, 1-22, and X chromosome for females. For optimizing automated human chromosome image analysis, many existing techniques assume cell normalcy. With many genetic abnormalities directly linked to structural and numerical aberrations of chromosomes within the metaphase spread, the two chromosome per class assumption may not be appropriate for anomaly analysis. At the University of Missouri, a data-driven homologue matching approach has been developed to identify all normal chromosomes within a metaphase spread from a selected class. Chromosome assignment to a specific class is initially based on neural networks, followed by banding pattern and centromeric index criteria checking, and concluding with homologue matching utilizing a density profile-based classifier, a shape profile-based classifier, and a binary band profile-based classifier. Based on preliminary results for the profile-based classifiers assigning chromosome 17, the Choquet integral is presented as an extension to the homologue matching approach. Experimental results are presented comparing the extended homologue matching approach to the transportation algorithm for identifying chromosome 21 within normal metaphase spreads.

摘要

自动吉姆萨染色染色体图像研究在很大程度上局限于与中期分裂相中单个染色体相关的分类方案。在正常人类中期分裂相中,常染色体类别(1 - 22号)有46条染色体,以同源对形式存在,女性还有一条X染色体。为了优化自动人类染色体图像分析,许多现有技术假定细胞正常。由于许多遗传异常与中期分裂相中染色体的结构和数量畸变直接相关,每个类别两条染色体的假设可能不适用于异常分析。在密苏里大学,已经开发出一种数据驱动的同源匹配方法,用于从选定类别中识别中期分裂相中的所有正常染色体。染色体分配到特定类别最初基于神经网络,随后检查带型模式和着丝粒指数标准,最后利用基于密度轮廓的分类器、基于形状轮廓的分类器和基于二元带型轮廓的分类器进行同源匹配。基于基于轮廓的分类器对17号染色体进行分配的初步结果,提出了Choquet积分作为同源匹配方法的扩展。给出了实验结果,比较了扩展的同源匹配方法与运输算法在正常中期分裂相中识别21号染色体的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验