Errington P A, Graham J
Department of Medical Biophysics, University of Manchester, United Kingdom.
Cytometry. 1993;14(6):627-39. doi: 10.1002/cyto.990140607.
This work presents an approach to the automatic classification of metaphase chromosomes using a multilayer perceptron neural network. Representation of the banding patterns by intuitively defined features is avoided. The inputs to the network are the chromosome size and centromeric index and a coarsely quantized representation of the chromosome banding profile. We demonstrate that following a fairly mechanical training procedure, the classification performance of the network compares favourably with a well-developed parametric classifier. The sensitivity of the network performance to variation in network parameters is investigated, and we show that a gain in efficiency is obtainable by an appropriate decomposition of the network. We discuss the flexibility of the classifier developed, its potential for enhancement, and how it may be adapted to suit the needs of current trends in karyotyping.
这项工作提出了一种使用多层感知器神经网络对中期染色体进行自动分类的方法。避免了通过直观定义的特征来表示带型模式。网络的输入是染色体大小、着丝粒指数以及染色体带型轮廓的粗略量化表示。我们证明,遵循相当机械的训练过程,该网络的分类性能与成熟的参数分类器相比具有优势。研究了网络性能对网络参数变化的敏感性,并且我们表明通过对网络进行适当分解可获得效率提升。我们讨论了所开发分类器的灵活性、其增强潜力以及如何对其进行调整以适应当前核型分析趋势的需求。