Kelsall J E, Diggle P J
Mathematics, Lancaster University, UK.
Stat Med. 1995;14(21-22):2335-42. doi: 10.1002/sim.4780142106.
We consider the problem of estimating the spatial variation in relative risks of two diseases, say, over a geographical region. Using an underlying Poisson point process model, we approach the problem as one of density ratio estimation implemented with a non-parametric kernel smoothing method. In order to assess the significance of any local peaks or troughs in the estimated risk surface, we introduce pointwise tolerance contours which can enhance a greyscale image plot of the estimate. We also propose a Monte Carlo test of the null hypothesis of constant risk over the whole region, to avoid possible over-interpretation of the estimated risk surface. We illustrate the capabilities of the methodology with two epidemiological examples.
我们考虑估计两种疾病相对风险的空间变化问题,比如在一个地理区域内。使用一个潜在的泊松点过程模型,我们将这个问题作为一个采用非参数核平滑方法实现的密度比估计问题来处理。为了评估估计的风险表面中任何局部峰值或谷值的显著性,我们引入了逐点容差轮廓,它可以增强估计的灰度图像图。我们还提出了一个关于整个区域风险恒定的原假设的蒙特卡罗检验,以避免对估计的风险表面进行可能的过度解读。我们用两个流行病学例子说明了该方法的能力。