Vincent J P
IPMC-CNRS UPR 411, Valbonne, France.
Cell Mol Neurobiol. 1995 Oct;15(5):501-12. doi: 10.1007/BF02071313.
Neurotensin is a 13-amino acid peptide (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu) originally isolated from hypothalami (Carraway and Leeman, 1973) and later from intestines (Kitabgi et al., 1976) of bovine. The peptide is present throughout the animal kingdom, suggesting its participation to important processes basic to animal life (Carraway et al., 1982). Neurotensin and its analogue neuromedin-N (Lys-Ile-Pro-Tyr-Ile-Leu) (Minamino et al., 1984) are synthesized by a common precursor in mammalian brain (Kislauskis et al., 1988) and intestine (Dobner et al., 1987). The central and peripheral distribution and effects of neurotensin have been extensively studied. In the brain, neurotensin is exclusively found in nerve cells, fibers, and terminals (Uhl et al., 1979), whereas the majority of peripheral neurotensin is found in the endocrine N-cells located in the intestinal mucosa (Orci et al., 1976; Helmstaedter et al., 1977). Central or peripheral injections of neurotensin produce completely different pharmacological effects (Table I) indicating that the peptide does not cross the blood-brain barrier. Many of the effects of centrally administered neurotensin are similar to those of neuroleptics or can be antagonized by simultaneous administration of TRH (Table I). The recently discovered nonpeptide antagonist SR 48692 (Gully et al., 1993) can inhibit several of the central and peripheral effects of neurotensin (Table I). Like many other neuropeptides, neurotensin is a messenger of intracellular communication working as a neurotransmitter or neuromodulator in the brain (Nemeroff et al., 1982) and as a local hormone in the periphery (Hirsch Fernstrom et al., 1980). Thus, several pharmacological, morphological, and neurochemical data suggest that one of the functions of neurotensin in the brain is to regulate dopamine neurotransmission along the nigrostriatal and mesolimbic pathways (Quirion, 1983; Kitabgi, 1989). On the other hand, the likely role of neurotensin as a parahormone in the gastrointestinal tract has been well documented (Rosell and Rökaeus, 1981; Kitabgi, 1982). Both central and peripheral modes of action of neurotensin imply as a first step the recognition of the peptide by a specific receptor located on the plasma membrane of the target cell. Formation of the neurotensin-receptor complex is then translated inside the cell by a change in the activity of an intracellular enzyme. This paper describes the binding and structural properties of neurotensin receptors as well as the signal transduction pathways that are activated by the peptide in various target tissues and cells.
神经降压素是一种由13个氨基酸组成的肽(焦谷氨酸-亮氨酸-酪氨酸-谷氨酸-天冬酰胺-赖氨酸-脯氨酸-精氨酸-精氨酸-脯氨酸-酪氨酸-异亮氨酸-亮氨酸),最初是从牛的下丘脑(卡拉韦和利曼,1973年)中分离出来的,后来又从牛的肠道(基塔比等人,1976年)中分离出来。这种肽存在于整个动物界,表明它参与了动物生命基本的重要过程(卡拉韦等人,1982年)。神经降压素及其类似物神经介素-N(赖氨酸-异亮氨酸-脯氨酸-酪氨酸-异亮氨酸-亮氨酸)(皆见南等,1984年)在哺乳动物的脑(基斯劳斯克斯等,1988年)和肠道(多布纳等,1987年)中由一个共同的前体合成。神经降压素在中枢和外周的分布及作用已得到广泛研究。在脑中,神经降压素仅存在于神经细胞、纤维和终末中(乌尔等,1979年),而外周的神经降压素大部分存在于位于肠黏膜的内分泌N细胞中(奥尔西等,1976年;黑尔姆施泰特等,1977年)。中枢或外周注射神经降压素会产生完全不同的药理作用(表I),这表明该肽不能穿过血脑屏障。中枢给予神经降压素的许多作用与抗精神病药物的作用相似,或者可被同时给予促甲状腺激素释放激素所拮抗(表I)。最近发现的非肽类拮抗剂SR 48692(古利等,1993年)可抑制神经降压素的几种中枢和外周作用(表I)。与许多其他神经肽一样,神经降压素是细胞内通讯的信使,在脑中作为神经递质或神经调节剂发挥作用(内梅罗夫等,1982年),在外周作为局部激素发挥作用(赫希·费恩斯特伦等,1980年)。因此,一些药理、形态学和神经化学数据表明,神经降压素在脑中的功能之一是调节黑质纹状体和中脑边缘通路的多巴胺神经传递(基里翁,1983年;基塔比,1989年)。另一方面,神经降压素作为胃肠道旁分泌激素的可能作用已有充分记录(罗塞尔和勒凯厄斯,1981年;基塔比,1982年)。神经降压素的中枢和外周作用方式都意味着第一步是靶细胞膜上的特异性受体识别该肽。然后,神经降压素-受体复合物的形成通过细胞内酶活性的变化在细胞内得以转化。本文描述了神经降压素受体 的结合和结构特性,以及该肽在各种靶组织和细胞中激活的信号转导途径。