Suppr超能文献

细胞表面的受限扩散或固定部分:一种新解释。

Constrained diffusion or immobile fraction on cell surfaces: a new interpretation.

作者信息

Feder T J, Brust-Mascher I, Slattery J P, Baird B, Webb W W

机构信息

Department of Physics, Cornell University, Ithaca, New York 14853, USA.

出版信息

Biophys J. 1996 Jun;70(6):2767-73. doi: 10.1016/S0006-3495(96)79846-6.

Abstract

Protein lateral mobility in cell membranes is generally measured using fluorescence photobleaching recovery (FPR). Since the development of this technique, the data have been interpreted by assuming free Brownian diffusion of cell surface receptors in two dimensions, an interpretation that requires that a subset of the diffusing species remains immobile. The origin of this so-called immobile fraction remains a mystery. In FPR, the motions of thousands of particles are inherently averaged, inevitably masking the details of individual motions. Recently, tracking of individual cell surface receptors has identified several distinct types of motion (Gross and Webb, 1988; Ghosh and Webb, 1988, 1990, 1994; Kusumi et al. 1993; Qian et al. 1991; Slattery, 1995), thereby calling into question the classical interpretation of FPR data as free Brownian motion of a limited mobile fraction. We have measured the motion of fluorescently labeled immunoglobulin E complexed to high affinity receptors (Fc epsilon RI) on rat basophilic leukemia cells using both single particle tracking and FPR. As in previous studies, our tracking results show that individual receptors may diffuse freely, or may exhibit restricted, time-dependent (anomalous) diffusion. Accordingly, we have analyzed FPR data by a new model to take this varied motion into account, and we show that the immobile fraction may be due to particles moving with the anomalous subdiffusion associated with restricted lateral mobility. Anomalous subdiffusion denotes random molecular motion in which the mean square displacements grow as a power law in time with a fractional positive exponent less than one. These findings call for a new model of cell membrane structure.

摘要

细胞膜中蛋白质的侧向流动性通常使用荧光光漂白恢复技术(FPR)来测量。自该技术发展以来,数据的解释一直基于假设细胞表面受体在二维空间中进行自由布朗扩散,这种解释要求一部分扩散的物质保持不动。这个所谓的固定部分的起源仍然是个谜。在FPR中,数千个粒子的运动本质上是平均的,不可避免地掩盖了单个运动的细节。最近,对单个细胞表面受体的追踪识别出了几种不同类型的运动(格罗斯和韦伯,1988年;戈什和韦伯,1988年、1990年、1994年;久留米等人,1993年;钱等人,1991年;斯莱特里,1995年),从而对将FPR数据解释为有限移动部分的自由布朗运动的经典解释提出了质疑。我们使用单粒子追踪和FPR测量了与大鼠嗜碱性白血病细胞上高亲和力受体(FcεRI)结合的荧光标记免疫球蛋白E的运动。与之前的研究一样,我们的追踪结果表明,单个受体可能自由扩散,也可能表现出受限的、时间依赖性(异常)扩散。因此,我们通过一个新模型分析了FPR数据,以考虑这种多样的运动,并且我们表明固定部分可能是由于粒子以与受限侧向流动性相关的异常亚扩散方式移动。异常亚扩散表示随机分子运动,其中均方位移随时间以幂律增长,幂指数为小于1的正分数。这些发现需要一种新的细胞膜结构模型。

相似文献

1
Constrained diffusion or immobile fraction on cell surfaces: a new interpretation.
Biophys J. 1996 Jun;70(6):2767-73. doi: 10.1016/S0006-3495(96)79846-6.
3
Mechanisms underlying anomalous diffusion in the plasma membrane.
Curr Top Membr. 2015;75:167-207. doi: 10.1016/bs.ctm.2015.03.002. Epub 2015 Apr 15.
5
Quantitative microscopy: protein dynamics and membrane organisation.
Traffic. 2009 Aug;10(8):962-71. doi: 10.1111/j.1600-0854.2009.00908.x. Epub 2009 Apr 4.
6
Measurement of lateral transport on cell surfaces.
Prog Clin Biol Res. 1976;9:137-47.
7
Anomalous diffusion of proteins in sheared lipid membranes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Sep;88(3):032705. doi: 10.1103/PhysRevE.88.032705. Epub 2013 Sep 5.
9
A model for membrane patchiness: lateral diffusion in the presence of barriers and vesicle traffic.
Biophys J. 1999 Dec;77(6):3163-75. doi: 10.1016/S0006-3495(99)77147-X.
10
Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study.
Biophys J. 2001 Oct;81(4):2226-40. doi: 10.1016/S0006-3495(01)75870-5.

引用本文的文献

1
2
p14 forms meso-scale assemblies upon phase separation with NPM1.
Nat Commun. 2024 Nov 11;15(1):9531. doi: 10.1038/s41467-024-53904-z.
4
Biomolecular condensates form spatially inhomogeneous network fluids.
Nat Commun. 2024 Apr 22;15(1):3413. doi: 10.1038/s41467-024-47602-z.
5
p14 forms meso-scale assemblies upon phase separation with NPM1.
Res Sq. 2023 Dec 7:rs.3.rs-3592059. doi: 10.21203/rs.3.rs-3592059/v1.
6
Similarly slow diffusion of BAM and SecYEG complexes in live E. coli cells observed with 3D spt-PALM.
Biophys J. 2023 Nov 21;122(22):4382-4394. doi: 10.1016/j.bpj.2023.10.017. Epub 2023 Oct 17.
7
Studying structure and functions of cell membranes by single molecule biophysical techniques.
Biophys Rep. 2021 Oct 31;7(5):384-398. doi: 10.52601/bpr.2021.210018.
8
Development of ultrafast camera-based single fluorescent-molecule imaging for cell biology.
J Cell Biol. 2023 Aug 7;222(8). doi: 10.1083/jcb.202110160. Epub 2023 Jun 6.
9
The Utility of Fluorescence Recovery after Photobleaching (FRAP) to Study the Plasma Membrane.
Membranes (Basel). 2023 May 2;13(5):492. doi: 10.3390/membranes13050492.
10
What's past is prologue: FRAP keeps delivering 50 years later.
Biophys J. 2023 Sep 19;122(18):3577-3586. doi: 10.1016/j.bpj.2023.05.016. Epub 2023 May 22.

本文引用的文献

3
Protein lateral mobility as a reflection of membrane microstructure.
Bioessays. 1993 Sep;15(9):579-88. doi: 10.1002/bies.950150903.
5
Revisiting the fluid mosaic model of membranes.
Science. 1995 Jun 9;268(5216):1441-2. doi: 10.1126/science.7770769.
6
Lateral mobility in membranes as detected by fluorescence recovery after photobleaching.
Biophys J. 1982 Oct;40(1):69-75. doi: 10.1016/S0006-3495(82)84459-7.
7
Molecular mobility on the cell surface.
Biochem Soc Symp. 1981(46):191-205.
9
Diffusion of low density lipoprotein-receptor complex on human fibroblasts.
J Cell Biol. 1982 Dec;95(3):846-52. doi: 10.1083/jcb.95.3.846.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验