Carriedo S G, Yin H Z, Weiss J H
Department of Psychobiology, University of California-Irvine, 92717-4290, USA.
J Neurosci. 1996 Jul 1;16(13):4069-79. doi: 10.1523/JNEUROSCI.16-13-04069.1996.
The nonphosphorylated neurofilament marker SMI-32 stains motor neurons in spinal cord slices and stains a subset of cultured spinal neurons ["large SMI-32(+) neurons"], which have a morphology consistent with motor neurons identified in vitro: large cell body, long axon, and extensive dendritic arborization. They are found preferentially in ventral spinal cord cultures, providing further evidence that large SMI-32(+) neurons are indeed motor neurons, and SMI-32 staining often colocalizes with established motor neuron markers (including acetylcholine, calcitonin gene-related peptide, and peripherin). Additionally, choline acetyltransferase activity (a frequently used index of the motor neuron population) and peripherin(+) neurons share with large SMI-32(+) neurons an unusual vulnerability to AMPA/kainate receptor-mediated injury. Kainate-induced loss of these motor neuron markers is Ca2+-dependent, which supports a critical role of Ca2+ ions in this injury. Raising extracellular Ca2+ exacerbates injury, whereas removal of extracellular Ca2+ is protective. A basis for this vulnerability is provided by the observation that most peripherin(+) neurons, like large SMI-32(+) neurons, are subject to kainate-stimulated Co2+ uptake, a histochemical stain that identifies neurons possessing Ca2+-permeable AMPA/kainate receptor-gated channels. Finally, of possibly greater relevance to the slow motor neuronal degeneration in diseases, both large SMI-32(+) neurons and peripherin(+) neurons are selectively damaged by prolonged (24 hr) low-level exposures to kainate (10 microM) or to the glutamate reuptake blocker L-trans-pyrrolidine-2,4-dicarboxylic acid (100 microM). During these low-level kainate exposures, large SMI-32(+) neurons showed higher intracellular Ca2+ concentrations than most spinal neurons, suggesting that Ca2+ ions are also important in this more slowly evolving injury.
非磷酸化神经丝标记物SMI-32可对脊髓切片中的运动神经元进行染色,并对一部分培养的脊髓神经元[“大型SMI-32(+)神经元”]进行染色,这些神经元的形态与体外鉴定的运动神经元一致:细胞体大、轴突长且有广泛的树突分支。它们优先存在于脊髓腹侧培养物中,这进一步证明大型SMI-32(+)神经元确实是运动神经元,并且SMI-32染色常与已确定的运动神经元标记物(包括乙酰胆碱、降钙素基因相关肽和外周蛋白)共定位。此外,胆碱乙酰转移酶活性(运动神经元群体常用的指标)和外周蛋白(+)神经元与大型SMI-32(+)神经元一样,对AMPA/海人藻酸受体介导的损伤具有异常的易损性。海人藻酸诱导的这些运动神经元标记物的丧失是Ca2+依赖性的,这支持了Ca2+离子在这种损伤中起关键作用。提高细胞外Ca2+会加重损伤,而去除细胞外Ca2+则具有保护作用。这种易损性的一个基础是观察到,大多数外周蛋白(+)神经元与大型SMI-32(+)神经元一样,会受到海人藻酸刺激的Co2+摄取,这是一种组织化学染色,可识别具有Ca2+通透AMPA/海人藻酸受体门控通道的神经元。最后,对于疾病中缓慢的运动神经元变性可能更相关的是,大型SMI-32(+)神经元和外周蛋白(+)神经元都会被长时间(24小时)低水平暴露于海人藻酸(10微摩尔)或谷氨酸再摄取阻滞剂L-反式吡咯烷-2,4-二羧酸(100微摩尔)选择性损伤。在这些低水平海人藻酸暴露期间,大型SMI-32(+)神经元的细胞内Ca2+浓度高于大多数脊髓神经元,这表明Ca2+离子在这种进展更缓慢的损伤中也很重要。