Haas K Z, Sperber E F, Moshé S L, Stanton P K
Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461-1602, USA.
J Neurosci. 1996 Jul 1;16(13):4250-60. doi: 10.1523/JNEUROSCI.16-13-04250.1996.
Seizures cause a persistent enhancement in dentate synaptic inhibition concurrent with, and possibly compensatory for, seizure-induced hippocampal hyperexcitability. To study this phenomenon, we evoked status epilepticus in rats with systemic kainic acid (KA), and 2 weeks later assessed granule cell inhibition with paired-pulse stimulation of the perforant path (PP) in vitro. Controls demonstrated three components of paired-pulse inhibition: early inhibition (10-30 msec), intermediate facilitation (30-120 msec), and late inhibition (120 msec to 120 sec). After seizures, inhibition in all components was enhanced significantly. The GABA(A) antagonist bicuculline blocked only early enhanced inhibition, demonstrating that both GABA(A) and GABA(B) postsynaptic receptors contribute to seizure-induced enhanced inhibition. In controls, the GABA(B) antagonist CGP 35348 increased both GABA(A) and GABA(B) responses in granule cells, suggesting that CGP 35348 acts presynaptically, blocking receptors that suppress GABA release. In contrast, slices from KA-treated rats were markedly less sensitive to CGP 35348. To test the hypothesis that GABA(B) receptors regulating GABA release are downregulated after seizures, we measured paired-pulse suppression of recurrent IPSPs, or disinhibition, using mossy fiber stimuli. Early disinhibition (< 200 msec) was reduced after seizures, whereas late disinhibition remained intact. CGP 35348 blocked the early component of disinhibition in controls and, to a lesser extent, reduced disinhibition in KA slices. However, paired monosynaptic IPSPs recorded intracellularly showed no difference in disinhibition between groups. Our findings indicate that seizure-induced enhancement in dentate inhibition is caused, at least in part, by reduced GABA(B) function in the polysynaptic recurrent inhibitory circuit, resulting in reduced disinhibition and heightened GABA release.
癫痫发作会导致齿状突触抑制持续增强,这与癫痫发作引起的海马体兴奋性过高同时出现,并且可能是对其的一种代偿。为了研究这一现象,我们通过全身注射 kainic acid(KA)在大鼠中诱发癫痫持续状态,2 周后在体外使用穿通通路(PP)的双脉冲刺激来评估颗粒细胞抑制情况。对照组显示出双脉冲抑制的三个成分:早期抑制(10 - 30 毫秒)、中间易化(30 - 120 毫秒)和晚期抑制(120 毫秒至 120 秒)。癫痫发作后,所有成分的抑制作用均显著增强。GABA(A)拮抗剂荷包牡丹碱仅阻断早期增强的抑制作用,表明 GABA(A)和 GABA(B)突触后受体均参与了癫痫发作诱导的增强抑制作用。在对照组中,GABA(B)拮抗剂 CGP 35348 增加了颗粒细胞中 GABA(A)和 GABA(B)的反应,这表明 CGP 35348 作用于突触前,阻断抑制 GABA 释放的受体。相比之下,KA 处理大鼠的脑片对 CGP 35348 的敏感性明显降低。为了检验癫痫发作后调节 GABA 释放的 GABA(B)受体下调这一假设,我们使用苔藓纤维刺激测量了反复性抑制性突触后电位(IPSP)的双脉冲抑制,即去抑制作用。癫痫发作后早期去抑制作用(< 200 毫秒)减弱,而晚期去抑制作用保持不变。CGP 35348 在对照组中阻断了去抑制作用的早期成分,并且在一定程度上减少了 KA 脑片中的去抑制作用。然而,细胞内记录的成对单突触 IPSP 在两组之间的去抑制作用上没有差异。我们的研究结果表明,癫痫发作诱导的齿状抑制增强至少部分是由多突触反复抑制回路中 GABA(B)功能降低所致,从而导致去抑制作用减弱和 GABA 释放增加。