Suppr超能文献

科凯恩综合征细胞对DNA损伤剂的敏感性并非源于活性基因转录偶联修复缺陷。

The sensitivity of Cockayne's syndrome cells to DNA-damaging agents is not due to defective transcription-coupled repair of active genes.

作者信息

van Oosterwijk M F, Versteeg A, Filon R, van Zeeland A A, Mullenders L H

机构信息

MGC-Department of Radiation Genetics and Chemical Mutagenesis, Leiden University, The Netherlands.

出版信息

Mol Cell Biol. 1996 Aug;16(8):4436-44. doi: 10.1128/MCB.16.8.4436.

Abstract

Two of the hallmarks of Cockayne's syndrome (CS) are the hypersensitivity of cells to UV light and the lack of recovery of the ability to synthesize RNA following exposure of cells to UV light, in spite of the normal repair capacity at the overall genome level. The prolonged repressed RNA synthesis has been attributed to a defect in transcription-coupled repair, resulting in slow removal of DNA lesions from the transcribed strand of active genes. This model predicts that the sensitivity of CS cells to another DNA-damaging agent, i.e., the UV-mimetic agent N-acetoxy-2-acetylaminofluorene (NA-AAF), should also be associated with a lack of resumption of RNA synthesis and defective transcription-coupled repair of NA-AAF-induced DNA adducts. We tested this by measuring the rate of excision of DNA adducts in the adenosine deaminase gene of primary normal human fibroblasts and two CS (complementation group A and B) fibroblast strains. High-performance liquid chromatography analysis of DNA adducts revealed that N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF) was the main adduct induced by NA-AAF in both normal and CS cells. No differences were found between normal and CS cells with respect to induction of this lesion either at the level of the genome overall or at the gene level. Moreover, repair of dG-C8-AF in the active adenosine deaminase gene occurred at similar rates and without strand specificity in normal and CS cells, indicating that transcription-coupled repair does not contribute significantly to repair of dG-C8-AF in active genes. Yet CS cells are threefold more sensitive to NA-AAF than are normal cells and are unable to recover the ability to synthesize RNA. Our data rule out defective transcription-coupled repair as the cause of the increased sensitivity of CS cells to DNA-damaging agents and suggest that the cellular sensitivity and the prolonged repressed RNA synthesis are primarily due to a transcription defect. We hypothesize that upon treatment of cells with either UV or NA-AAF, the basal transcription factor TFIIH becomes involved in nucleotide excision repair and that the CS gene products are involved in the conversion of TFIIH back to the transcription function. In this view, the CS proteins act as repair-transcription uncoupling factors. If the uncoupling process is defective, RNA synthesis will stay repressed, causing cellular sensitivity. Since transcription is essential for transcription-coupled repair, the CS defect will affect those lesions whose repair is predominantly transcription coupled, i.e., UV-induced cyclobutane pyrimidine dimers.

摘要

科凯恩综合征(CS)的两个标志是细胞对紫外线超敏,以及细胞暴露于紫外线后合成RNA的能力无法恢复,尽管在整个基因组水平上具有正常的修复能力。RNA合成的长期抑制归因于转录偶联修复缺陷,导致活性基因转录链上的DNA损伤去除缓慢。该模型预测,CS细胞对另一种DNA损伤剂,即紫外线模拟剂N-乙酰氧基-2-乙酰氨基芴(NA-AAF)的敏感性,也应与RNA合成恢复缺失以及NA-AAF诱导的DNA加合物的转录偶联修复缺陷相关。我们通过测量原代正常人成纤维细胞和两种CS(互补组A和B)成纤维细胞系的腺苷脱氨酶基因中DNA加合物的切除率来对此进行测试。对DNA加合物的高效液相色谱分析表明,N-(脱氧鸟苷-8-基)-2-氨基芴(dG-C8-AF)是NA-AAF在正常细胞和CS细胞中诱导产生的主要加合物。在整个基因组水平或基因水平上,正常细胞和CS细胞在这种损伤的诱导方面没有差异。此外,正常细胞和CS细胞中活性腺苷脱氨酶基因中的dG-C8-AF修复速率相似,且无链特异性,这表明转录偶联修复对活性基因中dG-C8-AF的修复贡献不大。然而,CS细胞对NA-AAF的敏感性是正常细胞的三倍,并且无法恢复合成RNA的能力。我们的数据排除了转录偶联修复缺陷是CS细胞对DNA损伤剂敏感性增加的原因,并表明细胞敏感性和RNA合成的长期抑制主要是由于转录缺陷。我们假设,在用紫外线或NA-AAF处理细胞后,基础转录因子TFIIH参与核苷酸切除修复,而CS基因产物参与将TFIIH转换回转录功能。按照这种观点,CS蛋白充当修复-转录解偶联因子。如果解偶联过程存在缺陷,RNA合成将持续受到抑制,导致细胞敏感。由于转录对于转录偶联修复至关重要,CS缺陷将影响那些修复主要是转录偶联的损伤,即紫外线诱导的环丁烷嘧啶二聚体。

相似文献

6
Blockage of transcription as a trigger for p53 accumulation by 2-acetylaminofluorene DNA-adducts.
Life Sci. 2003 Aug 22;73(14):1759-71. doi: 10.1016/s0024-3205(03)00506-x.
7
Ultraviolet-sensitive syndrome cells are defective in transcription-coupled repair of cyclobutane pyrimidine dimers.
DNA Repair (Amst). 2002 Aug 6;1(8):629-43. doi: 10.1016/s1568-7864(02)00056-3.
9
Deficient repair of the transcribed strand of active genes in Cockayne's syndrome cells.
Nucleic Acids Res. 1993 Dec 25;21(25):5890-5. doi: 10.1093/nar/21.25.5890.
10
UVB radiation-induced cancer predisposition in Cockayne syndrome group A (Csa) mutant mice.
DNA Repair (Amst). 2002 Feb 28;1(2):143-57. doi: 10.1016/s1568-7864(01)00010-6.

引用本文的文献

3
Coupling of human DNA excision repair and the DNA damage checkpoint in a defined in vitro system.
J Biol Chem. 2014 Feb 21;289(8):5074-82. doi: 10.1074/jbc.M113.542787. Epub 2014 Jan 8.
4
Histone methyltransferase DOT1L drives recovery of gene expression after a genotoxic attack.
PLoS Genet. 2013;9(7):e1003611. doi: 10.1371/journal.pgen.1003611. Epub 2013 Jul 4.
5
Replication protein A safeguards genome integrity by controlling NER incision events.
J Cell Biol. 2011 Feb 7;192(3):401-15. doi: 10.1083/jcb.201006011. Epub 2011 Jan 31.
7
Cockayne syndrome group B protein stimulates repair of formamidopyrimidines by NEIL1 DNA glycosylase.
J Biol Chem. 2009 Apr 3;284(14):9270-9. doi: 10.1074/jbc.M807006200. Epub 2009 Jan 29.
9
Human XPC-hHR23B interacts with XPA-RPA in the recognition of triplex-directed psoralen DNA interstrand crosslinks.
Nucleic Acids Res. 2005 May 24;33(9):2993-3001. doi: 10.1093/nar/gki610. Print 2005.
10
The many faces of Cockayne syndrome.
Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15273-4. doi: 10.1073/pnas.0406894101. Epub 2004 Oct 19.

本文引用的文献

3
DNA repair. Engagement with transcription.
Nature. 1993 May 13;363(6425):114-5. doi: 10.1038/363114a0.
4
Molecular mechanism of transcription-repair coupling.
Science. 1993 Apr 2;260(5104):53-8. doi: 10.1126/science.8465200.
5
Deficient repair of the transcribed strand of active genes in Cockayne's syndrome cells.
Nucleic Acids Res. 1993 Dec 25;21(25):5890-5. doi: 10.1093/nar/21.25.5890.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验