Suppr超能文献

硝酸盐对嗜热自养梭菌和热醋酸梭菌自养代谢的影响。

Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum.

作者信息

Fröstl J M, Seifritz C, Drake H L

机构信息

Lehrstuhl für Okologische Mikrobiologie, BITOK, Universität Bayreuth,Germany.

出版信息

J Bacteriol. 1996 Aug;178(15):4597-603. doi: 10.1128/jb.178.15.4597-4603.1996.

Abstract

Although nitrate stimulated the capacity of Clostridium thermoautotrophicum and Clostridium thermoaceticum to oxidize (utilize) substrates under heterotrophic conditions, it inhibited autotrophic H2-CO2-dependent growth. Under basal medium conditions, nitrate was also inhibitory to the use of one-carbon substrates (i.e., CO, formate, methanol, or the O-methyl groups of vanillate or syringate) as sole carbon energy sources. This inhibitory effect of nitrate was bypassed when both O-methyl groups and CO were provided concomitantly; H2-CO2 did not replace CO. These results indicated that nitrate blocked the reduction of CO2 to the methyl and carbonyl levels. On the basis of the inability of acetogenic cells (i.e., cells cultivated without nitrate) to consume or reduce nitrate in resting-cell assays, the capacity to dissimilate nitrate was not constitutive. Nitrate had no appreciable effect on the specific activities of enzymes central to the acetyl-coenzyme A (CoA) pathway. However, membranes obtained from cells cultivated under nitrate-dissimilating conditions were deficient in the b-type cytochrome that was typical of membranes from acetogenic cells, i.e., cells dependent upon the synthesis of acetate for the conservation of energy. Collectively, these findings indicated that (i) C. thermoautotrophicum and C. thermoaceticum cannot engage the carbon-fixing capacities of the acetyl-CoA pathway in the presence of nitrate and (ii) the nitrate block on the acetyl-CoA pathway occurs via an alteration in electron transport.

摘要

尽管硝酸盐在异养条件下刺激了嗜热自养梭菌和嗜热乙酸梭菌氧化(利用)底物的能力,但它抑制了自养的H₂-CO₂依赖性生长。在基础培养基条件下,硝酸盐对将一碳底物(即CO、甲酸盐、甲醇或香草酸盐或丁香酸盐的O-甲基)用作唯一碳能源也有抑制作用。当同时提供O-甲基和CO时,硝酸盐的这种抑制作用被绕过;H₂-CO₂不能替代CO。这些结果表明,硝酸盐阻止了CO₂还原为甲基和羰基水平。基于产乙酸细胞(即无硝酸盐培养的细胞)在静息细胞试验中无法消耗或还原硝酸盐,异化硝酸盐的能力不是组成型的。硝酸盐对乙酰辅酶A(CoA)途径核心酶的比活性没有明显影响。然而,从在异化硝酸盐条件下培养的细胞获得的膜缺乏产乙酸细胞(即依赖乙酸盐合成来保存能量的细胞)典型的b型细胞色素。总的来说,这些发现表明:(i)嗜热自养梭菌和嗜热乙酸梭菌在有硝酸盐存在时不能发挥乙酰-CoA途径的碳固定能力;(ii)硝酸盐对乙酰-CoA途径的阻断是通过电子传递的改变发生的。

相似文献

3
Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum.
J Bacteriol. 1993 Dec;175(24):8008-13. doi: 10.1128/jb.175.24.8008-8013.1993.
4
Formate-Dependent Acetogenic Utilization of Glucose by the Fecal Acetogen .
Appl Environ Microbiol. 2020 Nov 10;86(23). doi: 10.1128/AEM.01870-20.
8
Evidence that carbon monoxide is an obligatory intermediate in anaerobic acetyl-CoA synthesis.
Biochemistry. 1996 Sep 17;35(37):12119-25. doi: 10.1021/bi961014d.
9
Old acetogens, new light.
Ann N Y Acad Sci. 2008 Mar;1125:100-28. doi: 10.1196/annals.1419.016.
10
Role of carbon monoxide dehydrogenase in the autotrophic pathway used by acetogenic bacteria.
Proc Natl Acad Sci U S A. 1984 Oct;81(20):6261-5. doi: 10.1073/pnas.81.20.6261.

引用本文的文献

1
Effects of Nitrate on Hydrogenogenic Carbon Monoxide Oxidation in Parageobacillus thermoglucosidasius.
Environ Microbiol Rep. 2025 Jun;17(3):e70133. doi: 10.1111/1758-2229.70133.
2
Harnessing acetogenic bacteria for one-carbon valorization toward sustainable chemical production.
RSC Chem Biol. 2024 Jul 8;5(9):812-832. doi: 10.1039/d4cb00099d. eCollection 2024 Aug 28.
5
Energy conservation under extreme energy limitation: the role of cytochromes and quinones in acetogenic bacteria.
Extremophiles. 2021 Nov;25(5-6):413-424. doi: 10.1007/s00792-021-01241-0. Epub 2021 Sep 4.
6
Studies on Syngas Fermentation With in Stirred-Tank Reactors With Defined Gas Impurities.
Front Microbiol. 2021 Apr 15;12:655390. doi: 10.3389/fmicb.2021.655390. eCollection 2021.
7
Overcoming Energetic Barriers in Acetogenic C1 Conversion.
Front Bioeng Biotechnol. 2020 Dec 23;8:621166. doi: 10.3389/fbioe.2020.621166. eCollection 2020.
8
Genome-Based Comparison of All Species of the Genus , and Status of the Species and .
Front Microbiol. 2020 Jan 17;10:3070. doi: 10.3389/fmicb.2019.03070. eCollection 2019.
10
Evidence of mixotrophic carbon-capture by n-butanol-producer Clostridium beijerinckii.
Sci Rep. 2017 Oct 6;7(1):12759. doi: 10.1038/s41598-017-12962-8.

本文引用的文献

1
A New Type of Glucose Fermentation by Clostridium thermoaceticum.
J Bacteriol. 1942 Jun;43(6):701-15. doi: 10.1128/jb.43.6.701-715.1942.
2
3
Oxalate- and Glyoxylate-Dependent Growth and Acetogenesis by Clostridium thermoaceticum.
Appl Environ Microbiol. 1993 Sep;59(9):3062-9. doi: 10.1128/aem.59.9.3062-3069.1993.
4
H(2)-CO(2)-Dependent Anaerobic O-Demethylation Activity in Subsurface Sediments and by an Isolated Bacterium.
Appl Environ Microbiol. 1993 May;59(5):1325-31. doi: 10.1128/aem.59.5.1325-1331.1993.
6
A rapid and precise method for the determination of urea.
J Clin Pathol. 1960 Mar;13(2):156-9. doi: 10.1136/jcp.13.2.156.
7
Effect of CO2 on the fermentation capacities of the acetogen Peptostreptococcus productus U-1.
J Bacteriol. 1996 Jun;178(11):3140-5. doi: 10.1128/jb.178.11.3140-3145.1996.
8
Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum.
J Bacteriol. 1993 Dec;175(24):8008-13. doi: 10.1128/jb.175.24.8008-8013.1993.
9
Metabolism of homocetogens.
Antonie Van Leeuwenhoek. 1994;66(1-3):209-21. doi: 10.1007/BF00871640.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验