Salas S D, Bennett J E, Kwon-Chung K J, Perfect J R, Williamson P R
Clinical Mycology Section, National Institute of Allergy and Infectious Disease, Bethesda, Maryland 20892, USA.
J Exp Med. 1996 Aug 1;184(2):377-86. doi: 10.1084/jem.184.2.377.
To assess the relationship between melanin production by Cryptococcus neoformans and virulence on a molecular basis, we asked: (a) is CNLAC1, the laccase structural gene of C. neoformans, expressed in vivo?; (b) can mouse virulence be restored to cnlac1 (Mel-) mutants by complementation with CNLAC1?; and (c) will targeted gene deletion of CNLAC1 decrease virulence for mice? Melanin is produced when cryptococcal laccase catalyzes the oxidation of certain aromatic compounds, including L-dopa, to quinones, which then polymerize to melanin. To assess CNLAC1 transcription, RNA was extracted from C. neoformans in cerebrospinal fluid of infected rabbits. Reverse transcriptase-polymerase chain reaction detected CNLAC1 transcript, indicating that laccase may be produced in the infected host. To assess the effect of CNLAC1 deletion on virulence, a Mel- mutant (10S) was obtained by disruption of the 5' end of the gene. After multiple backcrosses with a parental strain to remove unintended genetic defects introduced by the transformation process, a Mel- progeny was tested and found to be much less virulent for mice than a Mel+ progeny. Another Mel- strain (mel2), obtained from J.C. Edman (University of California at San Francisco, CA), produced CNLAC1 transcript but no detectable melanin. Characterization of this mutant revealed a base substitution in CNLAC1 that changed a histidine to tyrosine in a putative copper-binding site. When this base change was introduced into CNLAC1 by site-directed mutagenesis, it no longer transformed mel2 to Mel+, indicating the importance of this histidine in laccase activity. Complementation of a mel2-derived mutant with CNLAC1 restored the Mel+ phenotype and increased virulence. These results support the concept that the CNLAC1 gene product has a role in virulence.
为了从分子层面评估新型隐球菌产生黑色素与毒力之间的关系,我们提出了以下问题:(a)新型隐球菌的漆酶结构基因CNLAC1在体内是否表达?(b)通过用CNLAC1进行互补,cnlac1(Mel-)突变体的小鼠毒力能否恢复?以及(c)靶向删除CNLAC1基因是否会降低对小鼠的毒力?当隐球菌漆酶催化某些芳香族化合物(包括L-多巴)氧化成醌,然后醌聚合成黑色素时,黑色素就会产生。为了评估CNLAC1的转录情况,从感染兔子脑脊液中的新型隐球菌中提取RNA。逆转录聚合酶链反应检测到CNLAC1转录本,表明漆酶可能在受感染宿主体内产生。为了评估删除CNLAC1对毒力的影响,通过破坏基因的5'端获得了一个Mel-突变体(10S)。在与亲本菌株多次回交以消除转化过程中引入的意外遗传缺陷后,对一个Mel-后代进行了测试,发现其对小鼠的毒力远低于Mel+后代。从J.C. 埃德曼(加利福尼亚大学旧金山分校,加利福尼亚州)获得的另一个Mel-菌株(mel2)产生了CNLAC1转录本,但未检测到黑色素。对该突变体的表征显示,CNLAC1中有一个碱基替换,在一个假定的铜结合位点将组氨酸变为酪氨酸。当通过定点诱变将此碱基变化引入CNLAC1时,它不再将mel2转化为Mel+,表明该组氨酸在漆酶活性中的重要性。用CNLAC1对mel2衍生的突变体进行互补恢复了Mel+表型并增加了毒力。这些结果支持了CNLAC1基因产物在毒力中起作用的概念。