Schweighofer N, Arbib M A, Dominey P F
Center for Neural Engineering, University of Southern California, Los Angeles 90089-2520, USA.
Biol Cybern. 1996 Jul;75(1):29-36. doi: 10.1007/BF00238737.
A large, realistic cerebellar neural network has been incorporated into a previously developed saccade model. Using this model, in the present paper, we simulate the complex spatiotemporal behavior of the neuronal subpopulations implicated in adaptive saccadic control. Our simulation results are in good agreement with neurophysiological and behavioral data. Furthermore, we suggest several new experiments to test the validity of our predictions on adaptive saccadic control.
一个大型的、逼真的小脑神经网络已被纳入先前开发的扫视模型。利用该模型,在本文中,我们模拟了与适应性扫视控制相关的神经元亚群的复杂时空行为。我们的模拟结果与神经生理学和行为学数据高度吻合。此外,我们提出了几个新的实验来检验我们对适应性扫视控制预测的有效性。