Suppr超能文献

睡眠脑电图的替代数据分析揭示了非线性的证据。

Surrogate data analysis of sleep electroencephalograms reveals evidence for nonlinearity.

作者信息

Fell J, Röschke J, Schäffner C

机构信息

Department of Psychiatry, University of Mainz, Germany.

出版信息

Biol Cybern. 1996 Jul;75(1):85-92. doi: 10.1007/BF00238742.

Abstract

We tested the hypothesis of whether sleep electroencephalographic (EEG) signals of different time windows (164 s, 82 s, 41 s and 20.5 s) are in accordance with linear stochastic models. For this purpose we analyzed the all-night sleep electroencephalogram of a healthy subject and corresponding Gaussian-rescaled phase randomized surrogates with a battery of five non-linear measures. The following nonlinear measures were implemented: largest Lyapunov exponent L1, correlation dimension D2, and the Green-Savit measures delta 2, delta 4 and delta 6. The hypothesis of linear stochastic data was rejected with high statistical significance. L1 and D2 yielded the most pronounced effects, while the Green-Savit measures were only partially successful in differentiating EEG epochs from the phase randomized surrogates. For L1 and D2 the efficiency of distinguishing EEG signals from linear stochastic data decreased with shortening of the time window. Altogether, our results indicate that EEG signals exhibit nonlinear elements and cannot completely be described by linear stochastic models.

摘要

我们检验了不同时间窗(164秒、82秒、41秒和20.5秒)的睡眠脑电图(EEG)信号是否符合线性随机模型这一假设。为此,我们分析了一名健康受试者的整夜睡眠脑电图以及相应的高斯重标相位随机替代数据,并采用了一系列五种非线性测量方法。实施了以下非线性测量:最大Lyapunov指数L1、关联维数D2以及Green-Savit测量值δ2、δ4和δ6。线性随机数据的假设被高度显著地拒绝。L1和D2产生了最显著的影响,而Green-Savit测量在区分脑电图时段与相位随机替代数据方面仅部分成功。对于L1和D2,随着时间窗缩短,从线性随机数据中区分脑电信号的效率降低。总之,我们的结果表明,脑电信号呈现非线性成分,不能完全由线性随机模型描述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验