Suppr超能文献

静息态人类脑电图的维度分析。II:替代数据测试表明存在非线性但不存在低维混沌。

Dimensional analysis of resting human EEG. II: Surrogate-data testing indicates nonlinearity but not low-dimensional chaos.

作者信息

Pritchard W S, Duke D W, Krieble K K

机构信息

Psychophysiology Laboratory, Bowman Gray Technical Center 611-12, R. J. Reynolds Tobacco Company, Winston Salem, NC 27102, USA.

出版信息

Psychophysiology. 1995 Sep;32(5):486-91. doi: 10.1111/j.1469-8986.1995.tb02100.x.

Abstract

Surrogate-data testing has recently been proposed as one way to detect the presence of nonlinearity and low-dimensional chaos in experimental time series. Such testing involves estimating correlation dimension for both the original data and surrogate data from which nonlinearity has been removed. We applied such testing to the same resting, eyes-closed, and eyes-open electroencephalogram (EEG) data set that was originally analyzed using dimension estimation applied only to the original data (Pritchard & Duke, 1992). Two kinds of surrogate-data sets had higher estimated dimension and poorer saturation. This indicates that the normal resting human EEG is nonlinear and therefore not a linear-stochastic system. Because nearly complete saturation at some loci was not differently affected by the surrogate-data procedures, our results also indicate that the normal resting human EEG is high dimensional and does not represent low-dimensional chaos.

摘要

替代数据测试最近被提出作为一种检测实验时间序列中非线性和低维混沌存在的方法。这种测试涉及估计原始数据和已去除非线性的替代数据的关联维数。我们将这种测试应用于最初仅对原始数据进行维数估计分析的相同静息、闭眼和睁眼脑电图(EEG)数据集(Pritchard & Duke,1992)。两种替代数据集具有更高的估计维数和更差的饱和度。这表明正常静息人类脑电图是非线性的,因此不是线性随机系统。由于某些位点几乎完全饱和不受替代数据程序的不同影响,我们的结果还表明正常静息人类脑电图是高维的,并不代表低维混沌。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验