Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
Clin Neurophysiol. 2018 Nov;129(11):2296-2305. doi: 10.1016/j.clinph.2018.08.004. Epub 2018 Sep 7.
We devise a data-driven framework to assess the level of consciousness in etiologically heterogeneous comatose patients using intrinsic dynamical changes of resting-state Electroencephalogram (EEG) signals.
EEG signals were collected from 54 comatose patients (GCS ⩽ 8) and 20 control patients (GCS > 8). We analyzed the EEG signals using a new technique, termed Intrinsic Network Reactivity Index (INRI), that aims to assess the overall lability of brain dynamics without the use of extrinsic stimulation. The proposed technique uses three sigma EEG events as a trigger for ensuing changes to the directional derivative of signals across the EEG montage.
The INRI had a positive relationship with GCS and was significantly different between various levels of consciousness. In comparison, classical band-limited power analysis did not show any specific patterns correlated to GCS.
These findings suggest that reaching low variance EEG activation patterns becomes progressively harder as the level of consciousness of patients deteriorate, and provide a quantitative index based on passive measurements that characterize this change.
Our results emphasize the role of intrinsic brain dynamics in assessing the level of consciousness in coma patients and the possibility of employing simple electrophysiological measures to recognize the severity of disorders of consciousness (DOC).
我们设计了一个数据驱动的框架,利用静息态脑电图(EEG)信号的固有动力学变化来评估病因异质性昏迷患者的意识水平。
从 54 名昏迷患者(GCS≤8)和 20 名对照患者(GCS>8)中收集 EEG 信号。我们使用一种新技术分析 EEG 信号,称为固有网络反应性指数(INRI),旨在评估大脑动力学的整体不稳定性,而无需使用外在刺激。该技术使用三个标准差 EEG 事件作为触发信号在 EEG 导联上的方向导数的后续变化。
INRI 与 GCS 呈正相关,在不同的意识水平之间有显著差异。相比之下,经典的带限功率分析没有显示出与 GCS 相关的任何特定模式。
这些发现表明,随着患者意识水平的恶化,达到低方差 EEG 激活模式变得越来越困难,并提供了一个基于被动测量的定量指标,该指标可以描述这种变化。
我们的研究结果强调了内在脑动力学在评估昏迷患者意识水平中的作用,以及采用简单的电生理测量来识别意识障碍(DOC)严重程度的可能性。