Meurer J, Berger A, Westhoff P
Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Düsseldorf, Germany.
Plant Cell. 1996 Jul;8(7):1193-207. doi: 10.1105/tpc.8.7.1193.
The high-chlorophyll fluorescence photosynthesis mutant hcf109 of Arabidopsis was characterized in detail to gain insights into the regulatory mechanism of RNA processing in higher plants. By using electron transport, chlorophyll fluorescence, and immunoblot studies, we assigned the mutational lesion to photosystems I and II and the plastid NAD(P)H dehydrogenase complex. The functional pleiotropy was reflected in RNA deficiencies. Although all nuclear-encoded photosynthetic RNAs analyzed revealed no difference in size or steady state level between mutant and wild type, the RNA patterns of the plastome-encoded psbB-psbT-psbH-petB-petD, psbD-psbC-ycf9, ndhC-ndhK-ndhJ, and ndhH-ndhA-ndhI-ndhG-ndhE-psaC-ndh D transcription units were severely disturbed. These operons encode subunits of photosystems I (psa) and II (psb), the cytochrome bGf complex (pet), the plastid NAD(P)H dehydrogenase (ndh), and the unidentified open reading frame ycf9. With the exception of the ndhC operon, the RNA deficiencies observed were specific and restricted to particular segments of the psbB, psbD/C, and ndhH operons, that is, the psbB-psbT, ycf9, and psaC regions. Run-on transcription studies with isolated chloroplasts showed that the failure of these transcripts to accumulate was due to RNA stability and not transcription. Other polycistronic transcription units analyzed were not affected by the mutation. This result indicates that the trans-regulatory factor encoded by the hcf109 gene is not a general RNA stability factor but that it specifically controls the stability of only these distinct transcripts. Because the hcf109 locus was mapped at a distance < 0.1 centimorgans from the phytochrome C gene, its molecular characterization by positional cloning is possible.
为深入了解高等植物中RNA加工的调控机制,对拟南芥的高叶绿素荧光光合作用突变体hcf109进行了详细表征。通过电子传递、叶绿素荧光和免疫印迹研究,我们将突变损伤定位到光系统I和II以及质体NAD(P)H脱氢酶复合体。功能多效性反映在RNA缺陷上。尽管分析的所有核编码光合RNA在突变体和野生型之间的大小或稳态水平上没有差异,但质体基因组编码的psbB-psbT-psbH-petB-petD、psbD-psbC-ycf9、ndhC-ndhK-ndhJ和ndhH-ndhA-ndhI-ndhG-ndhE-psaC-ndhD转录单元的RNA模式受到严重干扰。这些操纵子编码光系统I(psa)和II(psb)、细胞色素bGf复合体(pet)、质体NAD(P)H脱氢酶(ndh)的亚基以及未鉴定的开放阅读框ycf9。除ndhC操纵子外,观察到的RNA缺陷是特异性的,仅限于psbB、psbD/C和ndhH操纵子的特定片段,即psbB-psbT、ycf9和psaC区域。用分离的叶绿体进行的连续转录研究表明,这些转录本积累失败是由于RNA稳定性而非转录。分析的其他多顺反子转录单元不受该突变影响。这一结果表明,由hcf109基因编码的反式调节因子不是一般的RNA稳定性因子,而是仅特异性地控制这些不同转录本的稳定性。由于hcf109基因座与植物色素C基因的距离小于0.1厘摩,因此通过定位克隆对其进行分子表征是可能的。