Saccomani M P, Bonadonna R C, Bier D M, DeFronzo R A, Cobelli C
Department of Electronics and Informatics, University of Padua, Italy.
Am J Physiol. 1996 Jan;270(1 Pt 1):E170-85. doi: 10.1152/ajpendo.1996.270.1.E170.
We studied five healthy subjects with perfused forearm and euglycemic clamp techniques in combination with a three-tracer (D-[12C]mannitol, not transportable; 3-O-[14C]methyl-D-glucose, transportable but not metabolizable; D-[3-3H]glucose, transportable and metabolizable) intra-arterial pulse injection to assess transmembrane transport and intracellular phosphorylation of glucose in vivo in human muscle. The washout curves of the three tracers were analyzed with a multicompartmental model. A priori identifiability analysis of the tracer model shows that the rate constants of glucose transport into and out of the cells and of glucose phosphorylation are uniquely identifiable. Tracer model parameters were estimated by a nonlinear least-squares parameter estimation technique. We then solved for the tracee model and estimated bidirectional transmembrane transport glucose fluxes, glucose intracellular phosphorylation, extracellular and intracellular volumes of glucose distribution, and extracellular and intracellular glucose concentrations. Physiological hyperinsulinemia (473 +/- 22 pM) caused 2.7-fold (63.1 +/- 7.2 vs. 23.4 +/- 6.1 mumol.min-1.kg-1, P < 0.01) and 5.1-fold (42.5 +/- 5.8 vs. 8.4 +/- 2.2 mumol.min-1.kg-1, P < 0.01) increases in transmembrane influx and intracellular phosphorylation of glucose, respectively. Extracellular distribution volume and concentration of glucose were unchanged, whereas intracellular distribution volume of glucose was increased (approximately 2-fold) and intracellular glucose concentration was almost halved by hyperinsulinemia. In summary, 1) a multicompartment model of three-tracer kinetic data can quantify transmembrane glucose fluxes and intracellular glucose phosphorylation in human muscle; and 2) physiological hyperinsulinemia stimulates both transport and phosphorylation of glucose and, in doing so, amplifies the role of glucose transport as a rate-determining step of muscle glucose uptake.
我们使用灌注前臂和正常血糖钳夹技术,结合三种示踪剂(不可转运的D-[¹²C]甘露醇;可转运但不可代谢的3-O-[¹⁴C]甲基-D-葡萄糖;可转运且可代谢的D-[3-³H]葡萄糖)动脉内脉冲注射,对5名健康受试者进行研究,以评估人体肌肉中葡萄糖的跨膜转运和细胞内磷酸化。用多室模型分析三种示踪剂的洗脱曲线。示踪剂模型的先验可识别性分析表明,葡萄糖进出细胞的速率常数以及葡萄糖磷酸化的速率常数是唯一可识别的。通过非线性最小二乘参数估计技术估计示踪剂模型参数。然后我们求解被追踪物模型,并估计双向跨膜葡萄糖通量、葡萄糖细胞内磷酸化、葡萄糖分布的细胞外和细胞内体积以及细胞外和细胞内葡萄糖浓度。生理性高胰岛素血症(473±22 pM)分别使葡萄糖的跨膜内流和细胞内磷酸化增加2.7倍(63.1±7.2对23.4±6.1 μmol·min⁻¹·kg⁻¹,P<0.01)和5.1倍(42.5±5.8对8.4±2.2 μmol·min⁻¹·kg⁻¹,P<0.01)。葡萄糖的细胞外分布体积和浓度未发生变化,而高胰岛素血症使葡萄糖的细胞内分布体积增加(约2倍),细胞内葡萄糖浓度几乎减半。总之,1)三种示踪剂动力学数据的多室模型可以量化人体肌肉中的跨膜葡萄糖通量和细胞内葡萄糖磷酸化;2)生理性高胰岛素血症刺激葡萄糖的转运和磷酸化,从而增强葡萄糖转运作为肌肉葡萄糖摄取限速步骤的作用。