Orgül S, Cioffi G A, Bacon D R, Bhandari A, Van Buskirk E M
Devers Eye Institute, Legacy Portland Hospitals, Oregon, USA.
Microvasc Res. 1996 Mar;51(2):175-86. doi: 10.1006/mvre.1996.0019.
The objective of this study was to establish a nonradioactive technique to accurately assess blood flow in a small tissue such as the anterior optic nerve. Colored microspheres, 10.2 +/- 0.23 microns in diameter, were injected into the left atrium in each of 17 anesthetized rabbits. The rabbits were divided into four groups injected, respectively, with 5, 10, 50, or 100 million microspheres. Microsphere quantification in the tissue was performed after postmortem dissection and alkaline corrosion of the anterior optic nerve. Blood flow was evaluated by means of reference sample comparison method. While the relative interocular difference (range, 15.3-162.8%) was not significantly different between the rabbits injected with 5, 10, or 50 million microspheres (Kruskal-Wallis test, P = 0.11), injection with 100 million microspheres yielded a significantly lower relative interocular differences (range 2.3-12.8%) compared to the other three groups (Kruskal-Wallis test, P = 0.0048). In addition, reproducibility of microsphere counts was evaluated by ranking the difference between right and left optic nerve in percentage of the average number of microspheres per milligram of tissue in both optic nerves. The correlation between the relative interocular difference (range, 2.3-162.8%) and the average number of microspheres per milligram of tissue (1.2-78.7 microspheres/mg optic nerve tissue) was statistically significant (Spearman R, -0.90; P < 0.0001). The interocular variability in microsphere counts and interocular difference in intraocular pressure did not correlate (Spearman R, 0.33; P = 0.20). The rabbits injected with 100 million microspheres showed the highest average number of microspheres (range, 31.8-78.7 microspheres/mg optic nerve tissue). The optic nerve blood flow ranged between 0.14 and 0.24 microliters/mg/min among the rabbits injected with 100 million microspheres. The present experimental technique of optic nerve blood flow measurement is relatively inexpensive, highly reproducible, and obviates disposal of radioactive materials.
本研究的目的是建立一种非放射性技术,以准确评估诸如视神经前部等小组织中的血流情况。将直径为10.2±0.23微米的彩色微球注入17只麻醉兔的左心房。将这些兔子分为四组,分别注射500万、1000万、5000万或1亿个微球。在对视神经前部进行死后解剖和碱性腐蚀后,对组织中的微球进行定量分析。采用参考样本比较法评估血流情况。虽然注射500万、1000万或5000万个微球的兔子之间的相对眼间差异(范围为15.3 - 162.8%)无显著差异(Kruskal - Wallis检验,P = 0.11),但与其他三组相比,注射1亿个微球的兔子的相对眼间差异显著更低(范围为2.3 - 12.8%)(Kruskal - Wallis检验,P = 0.0048)。此外,通过将右眼和左眼视神经之间的差异按每毫克组织中微球平均数量的百分比进行排序,评估微球计数的可重复性。相对眼间差异(范围为2.3 - 162.8%)与每毫克组织中微球的平均数量(1.2 - 78.7个微球/毫克视神经组织)之间的相关性具有统计学意义(Spearman相关系数R为 - 0.90;P < 0.0001)。微球计数的眼间变异性与眼内压的眼间差异不相关(Spearman相关系数R为0.33;P = 0.20)。注射1亿个微球的兔子显示出最高的微球平均数量(范围为31.8 - 78.7个微球/毫克视神经组织)。在注射1亿个微球的兔子中,视神经血流范围为0.14至0.24微升/毫克/分钟。目前的视神经血流测量实验技术相对便宜,具有高度可重复性,并且无需处理放射性材料。