Burnet P W, Mefford I N, Smith C C, Gold P W, Sternberg E M
University Department of Clinical Neurology, NHS Trust, Oxford, UK.
Behav Brain Res. 1996;73(1-2):365-68. doi: 10.1016/0166-4328(96)00116-7.
We have previously demonstrated that susceptibility of the Lewis rat to inflammatory disease, compared to the relatively resistant Fischer F344 rat, is related to a hyporesponsive hypothalamopituitary adrenal axis to inflammatory and other stress mediators. Since 5-HT and the 5HT1A receptor are important stimulators of this axis, we have investigated the levels of 5-HT1A receptor binding sites and encoding mRNA, 5-HT and 5-hydroxyindole acetic acid in various brain regions of Lewis, Harlan Sprague Dawley and Fischer F344 rats. Lewis rats expressed significantly less hippocampal and frontal cortical 5-HT1A receptor binding sites and mRNA than Harlan Sprague-Dawley and Fischer F344 rats. Adrenalectomy increased the number of 5HT1A receptor binding sites and mRNA expression in the hippocampus of all three strains. The levels of hippocampal 5-HT in Fischer F344 rats were significantly greater than levels detected in the same regions for the other two strains. Hypothalamic 5-HT and 5-hydroxyindole acetic acid levels in Harlan Sprague-Dawley rats were higher than the same area from the other two strains. Adrenalectomy increased the levels of 5-hydroxyindole acetic acid in the hypothalamus of all three strains. We conclude that hippocampal 5-HT1A receptor densities and 5-HT levels in the rat parallel the the activity and responsiveness of the hypthalamopituitary-adrenal axis. We have published these data in an earlier report.