Suppr超能文献

Hidden Markov Models of the G-protein-coupled receptor family.

作者信息

Baldi P, Chauvin Y

机构信息

Division of Biology, California Institute of Technology, Pasadena 91125, USA.

出版信息

J Comput Biol. 1994 Winter;1(4):311-36. doi: 10.1089/cmb.1994.1.311.

Abstract

Hidden Markov Model techniques are used to derive a new model of the G-protein-coupled receptor family. The transition and emission parameters of the model are adjusted using a training set comprising 142 sequences. The resulting model is shown to perform well on a number of tasks, including multiple alignments, discrimination, large data base searches, classification, and fragment detection. General analytical results on the expectation and standard deviation of the likelihood of random sequences are also presented.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验