Destexhe A, Mainen Z F, Sejnowski T J
Howard Hughes Medical Institute, Computational Neurobiology Laboratory, La Jolla, CA 92037, USA.
J Comput Neurosci. 1994 Aug;1(3):195-230. doi: 10.1007/BF00961734.
Markov kinetic models were used to synthesize a complete description of synaptic transmission, including opening of voltage-dependent channels in the presynaptic terminal, release of neurotransmitter, gating of postsynaptic receptors, and activation of second-messenger systems. These kinetic schemes provide a more general framework for modeling ion channels than the Hodgkin-Huxley formalism, supporting a continuous spectrum of descriptions ranging from the very simple and computationally efficient to the highly complex and biophysically precise. Examples are given of simple kinetic schemes based on fits to experimental data that capture the essential properties of voltage-gated, synaptic and neuromodulatory currents. The Markov formalism allows the dynamics of ionic currents to be considered naturally in the larger context of biochemical signal transduction. This framework can facilitate the integration of a wide range of experimental data and promote consistent theoretical analysis of neural mechanisms from molecular interactions to network computations.
马尔可夫动力学模型被用于综合描述突触传递的完整过程,包括突触前终末中电压依赖性通道的开放、神经递质的释放、突触后受体的门控以及第二信使系统的激活。与霍奇金-赫胥黎形式体系相比,这些动力学方案为离子通道建模提供了一个更通用的框架,支持从非常简单且计算高效到高度复杂且生物物理精确的连续描述范围。文中给出了基于对实验数据拟合的简单动力学方案示例,这些方案捕捉了电压门控、突触和神经调节电流的基本特性。马尔可夫形式体系允许在生化信号转导的更大背景下自然地考虑离子电流的动力学。该框架有助于整合广泛的实验数据,并促进从分子相互作用到网络计算的神经机制的一致性理论分析。