Suppr超能文献

生理离子强度下单个人类红细胞的介电谱:细胞质的色散

Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: dispersion of the cytoplasm.

作者信息

Gimsa J, Müller T, Schnelle T, Fuhr G

机构信息

Institute of Biology, Humboldt-University, Berlin, Germany. jan=

出版信息

Biophys J. 1996 Jul;71(1):495-506. doi: 10.1016/S0006-3495(96)79251-2.

Abstract

Usually dielectrophoretic and electrorotation measurements are carried out at low ionic strength to reduce electrolysis and heat production. Such problems are minimized in microelectrode chambers. In a planar ultramicroelectrode chamber fabricated by semiconductor technology, we were able to measure the dielectric properties of human red blood cells in the frequency range from 2 kHz to 200 MHz up to physiological ion concentrations. At low ionic strength, red cells exhibit a typical electrorotation spectrum with an antifield rotation peak at low frequencies and a cofield rotation peak at higher ones. With increasing medium conductivity, both electrorotational peaks shift toward higher frequencies. The cofield peak becomes antifield for conductivities higher than 0.5 S/m. Because the polarizability of the external medium at these ionic strengths becomes similar to that of the cytoplasm, properties can be measured more sensitively. The critical dielectrophoretic frequencies were also determined. From our measurements, in the wide conductivity range from 2 mS/m to 1.5 S/m we propose a single-shell erythrocyte model. This pictures the cell as an oblate spheroid with a long semiaxis of 3.3 microns and an axial ratio of 1:2. Its membrane exhibits a capacitance of 0.997 x 10(-2) F/m2 and a specific conductance of 480 S/m2. The cytoplasmic parameters, a conductivity of 0.4 S/m at a dielectric constant of 212, disperse around 15 MHz to become 0.535 S/m and 50, respectively. We attribute this cytoplasmic dispersion to hemoglobin and cytoplasmic ion properties. In electrorotation measurements at about 60 MHz, an unexpectedly low rotation speed was observed. Around 180 MHz, the speed increased dramatically. By analysis of the electric chamber circuit properties, we were able to show that these effects are not due to cell polarization but are instead caused by a dramatic increase in the chamber field strength around 180 MHz. Although the chamber exhibits a resonance around 180 MHz, the harmonic content of the square-topped driving signals generates distortions of electrorotational spectra at far lower frequencies. Possible technological applications of chamber resonances are mentioned.

摘要

通常,介电泳和旋转电泳测量是在低离子强度下进行的,以减少电解和热量产生。在微电极腔室中,这些问题被最小化。在通过半导体技术制造的平面超微电极腔室中,我们能够在高达生理离子浓度的情况下,测量频率范围从2 kHz到200 MHz的人类红细胞的介电特性。在低离子强度下,红细胞呈现出典型的旋转电泳光谱,在低频处有一个反场旋转峰,在高频处有一个同场旋转峰。随着介质电导率的增加,两个旋转电泳峰都向更高频率移动。当电导率高于0.5 S/m时,同场峰变为反场峰。由于在这些离子强度下外部介质的极化率变得与细胞质的极化率相似,因此可以更灵敏地测量特性。还确定了临界介电泳频率。根据我们的测量结果,在2 mS/m至1.5 S/m的宽电导率范围内,我们提出了一个单壳红细胞模型。该模型将细胞描绘为一个扁球体,长半轴为3.3微米,轴比为1:2。其膜表现出电容为0.997×10⁻² F/m²,比电导率为480 S/m²。细胞质参数为,在介电常数为212时电导率为0.4 S/m,在15 MHz左右分散后分别变为0.535 S/m和50。我们将这种细胞质分散归因于血红蛋白和细胞质离子特性。在大约60 MHz的旋转电泳测量中,观察到意外的低旋转速度。在180 MHz左右,速度急剧增加。通过分析电腔室电路特性,我们能够表明这些效应不是由于细胞极化,而是由180 MHz左右腔室场强的急剧增加引起的。尽管腔室在180 MHz左右表现出共振,但方顶驱动信号的谐波含量会在远低于该频率时产生旋转电泳光谱的畸变。文中提到了腔室共振可能的技术应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b63a/1233500/99336220adc2/biophysj00045-0497-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验