Proost J H, Wierda J M, Meijer D K
Groningen Institute for Drug Studies (GIDS), University Centre for Pharmacy, Department of Pharmacokinetics and Drug Delivery, University of Groningen, The Netherlands.
J Pharmacokinet Biopharm. 1996 Feb;24(1):45-77. doi: 10.1007/BF02353510.
An extended pharmacokinetic/pharmacodynamic (PK/PD) model is presented, in which the effect of binding of the drug to plasma proteins and to tissue binding sites in a peripheral compartment, and nonspecific and receptor binding in the effect compartment are taken into account. It represents an extension of the classical Sheiner model, and the model proposed by Donati and Meistelman. The present model is characterized by the following parameters: Kue (exit rate constant of unbound drug from the effect compartment), Pue (ratio of the unbound clearances to and from the effect compartment), fue (fraction of drug in effect compartment that is not bound to nonspecific binding sites), Kd (equilibrium dissociation constant of drug-receptor binding), and Rtot (concentration of receptor binding sites in effect compartment). The rate of association and dissociation of the drug-receptor complex can be incorporated in the model. The influence of the pharmacokinetic parameters (V1, V2, fu, fu2, CLu10, CLu20, CLu12, CLu21) and the PK/PD model parameters (kue, Pue, fue, Kd, Rtot) on various dynamic parameters is analyzed. These include potency (single dose needed to produce 90% effect, ED90), constant infusion dosing rate needed to maintain a constant effect of 90%, time to maximum effect (onset time), and duration to 90% recovery. The neuromuscular blocking agent vecuronium is used as an example. It is shown that both potency and time course of action are strongly dependent on the ratio V1/fu, CLu10, kue, Pue (at equipotent doses the time course is not affected by Pue), fue, Kd, and Rtot (only if Rtot is high), whereas they are less affected by the ratio V2/fu2, CLu20, CLu12, and CLu21. In general, the model parameters affect the ED90 and the time course of action in the same direction, e.g., an increase of V1 results in an increase of ED90 and an increase of onset time and duration. However, the unbound clearance CLu10, the intercompartmental unbound clearance CLu12 and the receptor affinity Kd have an opposite effect on ED90 and the time course parameters, e.g., an increase of CLu10 results in an increase of ED90 and a decrease of onset time and duration. This effect may be responsible for the inverse relationship between onset time and potency of neuromuscular blocking drugs observed in animal experiments and clinical studies. We demonstrate that PK/PD analysis using the traditional effect compartment model (Sheiner model) results in an apparent value of keo, which is a function of kue, fue, Kd, Rtot, as well as the unbound drug concentration in the effect compartment Cue. On the other hand, the model proposed by Donati and Meistelman gives correct values of keo (equal to the product fue.kue), but the receptor affinity Kd and the receptor density Rtot obtained by this method are apparent values, which depend on fu, fue, and Pue.
本文提出了一种扩展的药代动力学/药效学(PK/PD)模型,该模型考虑了药物与血浆蛋白及外周室组织结合位点的结合效应,以及效应室中的非特异性结合和受体结合。它是经典的谢纳模型以及多纳蒂和梅斯特尔曼提出的模型的扩展。本模型具有以下参数:Kue(未结合药物从效应室的排出速率常数)、Pue(进出效应室的未结合清除率之比)、fue(效应室中未与非特异性结合位点结合的药物分数)、Kd(药物-受体结合的平衡解离常数)和Rtot(效应室中受体结合位点的浓度)。药物-受体复合物的结合和解离速率可纳入该模型。分析了药代动力学参数(V1、V2、fu、fu2、CLu10、CLu20、CLu12、CLu21)和PK/PD模型参数(kue、Pue、fue、Kd、Rtot)对各种动力学参数的影响。这些参数包括效能(产生90%效应所需的单剂量,ED90)、维持90%恒定效应所需的持续输注给药速率、达到最大效应的时间(起效时间)以及恢复到90%的持续时间。以神经肌肉阻滞剂维库溴铵为例。结果表明,效能和作用时间过程都强烈依赖于V1/fu、CLu10、kue、Pue(在等效剂量下,时间过程不受Pue影响)、fue、Kd和Rtot(仅当Rtot较高时),而受V2/fu2、CLu20、CLu12和CLu21的影响较小。一般来说,模型参数对ED90和作用时间过程的影响方向相同,例如,V1增加会导致ED90增加以及起效时间和持续时间增加。然而,未结合清除率CLu10、室间未结合清除率CLu12和受体亲和力Kd对ED90和时间过程参数有相反的影响,例如,CLu10增加会导致ED90增加以及起效时间和持续时间减少。这种效应可能是动物实验和临床研究中观察到的神经肌肉阻滞药物起效时间与效能之间反比关系的原因。我们证明,使用传统效应室模型(谢纳模型)进行PK/PD分析会得出keo的表观值,它是kue、fue、Kd、Rtot以及效应室中未结合药物浓度Cue的函数。另一方面,多纳蒂和梅斯特尔曼提出的模型给出了正确的keo值(等于fue·kue的乘积),但通过该方法获得的受体亲和力Kd和受体密度Rtot是表观值,它们取决于fu、fue和Pue。