Wang L, O'Connell T, Tropsha A, Hermans J
Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill 27599, USA.
Biopolymers. 1996 Oct;39(4):479-89. doi: 10.1002/(sici)1097-0282(199610)39:4<479::aid-bip1>3.0.co;2-u.
Using molecular dynamics simulations to calculate free energies of molecular transformation, we have computed helix-coil transition free energies for alanine oligomers up to 14 residues long. The simulations have been done on the model in vacuo with dielectric constant, epsilon = 1, 5, 25, and infinity and on the model in solution with explicit representation of water molecules and with partial charges on the oligomer set to zero. (The analogous simulations of the solvated model with full charges on the oligomer were reported elsewhere [L. Wang et al. (1995) Proceedings of the National Academy of Science USA 92, 10924-10928]). In vacuo, both entropic and electrostatic contributions oppose formation of a 3-residue helical nucleus in the helix initiation step. The entropy change opposing helix growth is found to be 3 e.u., van der Waals interactions favor helix growth by 1.9 kcal/mol, and electrostatic interactions favor helix growth by 3 kcal/mol (for epsilon = 1; all these values are per residue). In water, helix stability is slightly greater for the zero-charge model than for the full-charge model, i.e., the polypeptide's electrostatic interactions, which include hydrogen bonds, slightly destabilize the helix. The helix stabilizing contribution of the hydrophobic effect was found to be identical to that of the van der Waals interactions in vacuo (i.e., 1.9 kcal/mol per residue). The zero-charge model has nearly identical helix stability in vacuo and in water, the almost identical free energies of transfer of helix and coil state of the zero-charge oligomer from vacuum to water are found to be small. Thus, the results of this systematic variation of the force field afford a meaningful decomposition of the free energies for helix initiation and growth.
利用分子动力学模拟计算分子转变的自由能,我们已经计算了长达14个残基的丙氨酸寡聚物的螺旋-线团转变自由能。模拟是在真空模型中进行的,介电常数分别为ε = 1、5、25和无穷大,以及在溶液模型中进行的,其中明确表示了水分子,且寡聚物上的部分电荷设为零。(关于寡聚物带全电荷的溶剂化模型的类似模拟已在其他地方报道[L. Wang等人(1995年),《美国国家科学院院刊》92,10924 - 10928])。在真空中,熵和静电贡献在螺旋起始步骤中都不利于三残基螺旋核的形成。发现阻碍螺旋生长的熵变为3熵单位,范德华相互作用有利于螺旋生长1.9千卡/摩尔,静电相互作用有利于螺旋生长3千卡/摩尔(对于ε = 1;所有这些值都是每残基的)。在水中,零电荷模型的螺旋稳定性比全电荷模型略高,即多肽的静电相互作用(包括氢键)会使螺旋略微不稳定。发现疏水效应的螺旋稳定贡献与真空中的范德华相互作用相同(即每残基1.9千卡/摩尔)。零电荷模型在真空中和水中具有几乎相同的螺旋稳定性,发现零电荷寡聚物的螺旋态和线团态从真空转移到水的自由能几乎相同且很小。因此,力场这种系统变化的结果为螺旋起始和生长的自由能提供了有意义的分解。