Suppr超能文献

Effects of salt bridges on protein structure and design.

作者信息

Sindelar C V, Hendsch Z S, Tidor B

机构信息

Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139-4307, USA.

出版信息

Protein Sci. 1998 Sep;7(9):1898-914. doi: 10.1002/pro.5560070906.

Abstract

Theoretical calculations (Hendsch ZS & Tidor B, 1994, Protein Sci 3:211-226) and experiments (Waldburger CD et al., 1995, Nat Struct Biol 2:122-128; Wimley WC et al., 1996, Proc Natl Acad Sci USA 93:2985-2990) suggest that hydrophobic interactions are more stabilizing than salt bridges in protein folding. The lack of apparent stability benefit for many salt bridges requires an alternative explanation for their occurrence within proteins. To examine the effect of salt bridges on protein structure and stability in more detail, we have developed an energy function for simple cubic lattice polymers based on continuum electrostatic calculations of a representative selection of salt bridges found in known protein crystal structures. There are only three types of residues in the model, with charges of -1, 0, or + 1. We have exhaustively enumerated conformational space and significant regions of sequence space for three-dimensional cubic lattice polymers of length 16. The results demonstrate that, while the more highly charged sequences are less stable, the loss of stability is accompanied by a substantial reduction in the degeneracy of the lowest-energy state. Moreover, the reduction in degeneracy is greater due to charges that pair than for lone charges that remain relatively exposed to solvent. We have also explored and illustrated the use of ion-pairing strategies for rational structural design using model lattice studies.

摘要

相似文献

1
Effects of salt bridges on protein structure and design.
Protein Sci. 1998 Sep;7(9):1898-914. doi: 10.1002/pro.5560070906.
2
Salt bridge stability in monomeric proteins.
J Mol Biol. 1999 Nov 12;293(5):1241-55. doi: 10.1006/jmbi.1999.3218.
3
Close-range electrostatic interactions in proteins.
Chembiochem. 2002 Jul 2;3(7):604-17. doi: 10.1002/1439-7633(20020703)3:7<604::AID-CBIC604>3.0.CO;2-X.
4
Relationship between ion pair geometries and electrostatic strengths in proteins.
Biophys J. 2002 Sep;83(3):1595-612. doi: 10.1016/S0006-3495(02)73929-5.
5
Defining the role of salt bridges in protein stability.
Methods Mol Biol. 2009;490:227-60. doi: 10.1007/978-1-59745-367-7_10.
7
Protein thermal stability enhancement by designing salt bridges: a combined computational and experimental study.
PLoS One. 2014 Nov 13;9(11):e112751. doi: 10.1371/journal.pone.0112751. eCollection 2014.
8
Electrostatic strengths of salt bridges in thermophilic and mesophilic glutamate dehydrogenase monomers.
Proteins. 2000 Mar 1;38(4):368-83. doi: 10.1002/(sici)1097-0134(20000301)38:4<368::aid-prot3>3.0.co;2-r.
10
Contribution of salt bridges toward protein thermostability.
J Biomol Struct Dyn. 2000;17 Suppl 1:79-85. doi: 10.1080/07391102.2000.10506606.

引用本文的文献

1
NMR-Derived Salt Bridges in Insulin Analogue: Resolving Artifactual Overbinding in Molecular Dynamics via Charge Scaling.
J Phys Chem Lett. 2025 Jul 24;16(29):7436-7442. doi: 10.1021/acs.jpclett.5c01786. Epub 2025 Jul 15.
2
Interactions of Sucrose and Trehalose with Lysozyme in Different Media: A Perspective from Atomistic Molecular Dynamics Simulations.
Mol Pharm. 2025 Jun 2;22(6):2997-3009. doi: 10.1021/acs.molpharmaceut.4c01435. Epub 2025 Apr 25.
4
Screening TLR4 Binding Peptide from Venom Glands Based on Phage Display.
Toxins (Basel). 2024 Feb 24;16(3):113. doi: 10.3390/toxins16030113.
6
De novo metalloprotein design.
Nat Rev Chem. 2022 Jan;6(1):31-50. doi: 10.1038/s41570-021-00339-5. Epub 2021 Dec 6.
7
A newly introduced salt bridge cluster improves structural and biophysical properties of de novo TIM barrels.
Protein Sci. 2022 Feb;31(2):513-527. doi: 10.1002/pro.4249. Epub 2021 Dec 16.
8
Discovery of Novel Cyclic Salt Bridge in Thermophilic Bacterial Protease and Study of its Sequence and Structure.
Appl Biochem Biotechnol. 2021 Jun;193(6):1688-1700. doi: 10.1007/s12010-021-03547-3. Epub 2021 Mar 8.
10
In silico-designed lignin peroxidase from shows enhanced acid stability for depolymerization of lignin.
Biotechnol Biofuels. 2018 Dec 10;11:325. doi: 10.1186/s13068-018-1324-4. eCollection 2018.

本文引用的文献

1
Optimization by simulated annealing.
Science. 1983 May 13;220(4598):671-80. doi: 10.1126/science.220.4598.671.
2
De novo protein design: fully automated sequence selection.
Science. 1997 Oct 3;278(5335):82-7. doi: 10.1126/science.278.5335.82.
3
The statistical-thermodynamic basis for computation of binding affinities: a critical review.
Biophys J. 1997 Mar;72(3):1047-69. doi: 10.1016/S0006-3495(97)78756-3.
4
Adding backbone to protein folding: why proteins are polypeptides.
Fold Des. 1996;1(1):R17-20. doi: 10.1016/S1359-0278(96)00005-3.
5
Energetic decomposition of the alpha-helix-coil equilibrium of a dynamic model system.
Biopolymers. 1996 Oct;39(4):479-89. doi: 10.1002/(sici)1097-0282(199610)39:4<479::aid-bip1>3.0.co;2-u.
6
Emergence of preferred structures in a simple model of protein folding.
Science. 1996 Aug 2;273(5275):666-9. doi: 10.1126/science.273.5275.666.
7
Direct measurement of salt-bridge solvation energies using a peptide model system: implications for protein stability.
Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2985-90. doi: 10.1073/pnas.93.7.2985.
8
Empirical scale of side-chain conformational entropy in protein folding.
J Mol Biol. 1993 Jun 5;231(3):825-39. doi: 10.1006/jmbi.1993.1329.
9
Genetic algorithms for protein folding simulations.
J Mol Biol. 1993 May 5;231(1):75-81. doi: 10.1006/jmbi.1993.1258.
10
Protein folding--what's the question?
Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):439-41. doi: 10.1073/pnas.90.2.439.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验