Suppr超能文献

大肠杆菌DNA拓扑异构酶IV parC基因的喹诺酮抗性突变体

Quinolone-resistant mutants of escherichia coli DNA topoisomerase IV parC gene.

作者信息

Kumagai Y, Kato J I, Hoshino K, Akasaka T, Sato K, Ikeda H

机构信息

Department of Molecular Biology, University of Tokyo, Japan.

出版信息

Antimicrob Agents Chemother. 1996 Mar;40(3):710-14. doi: 10.1128/AAC.40.3.710.

Abstract

Escherichia coli quinolone-resistant strains with mutations of the parC gene, which codes for a subunit of topoisomerase IV, were isolated from a quinolone-resistant gyrA mutant of DNA gyrase. Quinolone-resistant parC mutants were also identified among the quinolone-resistant clinical strains. The parC mutants became susceptible to quinolones by introduction of a parC+ plasmid. Introduction of the multicopy plasmids carrying the quinolone-resistant parC mutant gene resulted in an increase in MICs of quinolones for the parC+ and quinolone-resistant gyrA strain. Nucleotide sequences of the quinolone-resistant parC mutant genes were determined, and missense mutations at position Gly-78, Ser-80, or Glu-84, corresponding to those in the quinolone-resistance-determining region of DNA gyrase, were identified. These results indicate that topoisomerase IV is a target of quinolones in E. coli and suggest that the susceptibility of E. coli cells to quinolones is determined by sensitivity of the targets, DNA gyrase and topoisomerase IV.

摘要

从DNA旋转酶的喹诺酮抗性gyrA突变体中分离出具有parC基因突变的大肠杆菌喹诺酮抗性菌株,parC基因编码拓扑异构酶IV的一个亚基。在喹诺酮抗性临床菌株中也鉴定出了喹诺酮抗性parC突变体。通过导入parC+质粒,parC突变体对喹诺酮变得敏感。携带喹诺酮抗性parC突变基因的多拷贝质粒的导入导致parC+和喹诺酮抗性gyrA菌株的喹诺酮最低抑菌浓度(MIC)增加。测定了喹诺酮抗性parC突变基因的核苷酸序列,并鉴定出在第78位甘氨酸、第80位丝氨酸或第84位谷氨酸处的错义突变,这些位置与DNA旋转酶的喹诺酮抗性决定区域中的突变相对应。这些结果表明拓扑异构酶IV是大肠杆菌中喹诺酮的作用靶点,并提示大肠杆菌细胞对喹诺酮的敏感性由靶点DNA旋转酶和拓扑异构酶IV的敏感性决定。

相似文献

1
Quinolone-resistant mutants of escherichia coli DNA topoisomerase IV parC gene.
Antimicrob Agents Chemother. 1996 Mar;40(3):710-14. doi: 10.1128/AAC.40.3.710.
4
Detection of mutations in parC in quinolone-resistant clinical isolates of Escherichia coli.
Antimicrob Agents Chemother. 1996 Feb;40(2):491-3. doi: 10.1128/AAC.40.2.491.
5
8
Cloning and primary structure of Staphylococcus aureus DNA topoisomerase IV: a primary target of fluoroquinolones.
Mol Microbiol. 1994 Aug;13(4):641-53. doi: 10.1111/j.1365-2958.1994.tb00458.x.

引用本文的文献

2
Survey of Oxolinic Acid-Resistant Erwinia amylovora in Korean Apple and Pear Orchards, and the Fitness Impact of Constructed Mutants.
Plant Pathol J. 2022 Oct;38(5):482-489. doi: 10.5423/PPJ.OA.04.2022.0059. Epub 2022 Oct 1.
4
Genotoxic effects of PM and PM bound metals: metal bioaccessibility, free radical generation, and role of iron.
Environ Geochem Health. 2019 Jun;41(3):1163-1186. doi: 10.1007/s10653-018-0199-4. Epub 2018 Oct 9.
5
Mutation Supply and Relative Fitness Shape the Genotypes of Ciprofloxacin-Resistant Escherichia coli.
Mol Biol Evol. 2017 May 1;34(5):1029-1039. doi: 10.1093/molbev/msx052.
6
Role of metals in free radical generation and genotoxicity induced by airborne particulate matter (PM) from Pune (India).
Environ Sci Pollut Res Int. 2016 Dec;23(23):23854-23866. doi: 10.1007/s11356-016-7494-3. Epub 2016 Sep 14.
7
Contribution of topoisomerase IV mutation to quinolone resistance in Mycoplasma genitalium.
Antimicrob Agents Chemother. 2013 Apr;57(4):1772-6. doi: 10.1128/AAC.01956-12. Epub 2013 Jan 28.
8
Comparative genomics of 28 Salmonella enterica isolates: evidence for CRISPR-mediated adaptive sublineage evolution.
J Bacteriol. 2011 Jul;193(14):3556-68. doi: 10.1128/JB.00297-11. Epub 2011 May 20.
10
Emergence of fluoroquinolone-resistant Haemophilus influenzae strains among elderly patients but not among children.
J Clin Microbiol. 2008 Jan;46(1):361-5. doi: 10.1128/JCM.01561-07. Epub 2007 Oct 31.

本文引用的文献

2
Decatenation activity of topoisomerase IV during oriC and pBR322 DNA replication in vitro.
Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8571-5. doi: 10.1073/pnas.90.18.8571.
3
Cloning and primary structure of Staphylococcus aureus DNA topoisomerase IV: a primary target of fluoroquinolones.
Mol Microbiol. 1994 Aug;13(4):641-53. doi: 10.1111/j.1365-2958.1994.tb00458.x.
4
Comparison of inhibition of Escherichia coli topoisomerase IV by quinolones with DNA gyrase inhibition.
Antimicrob Agents Chemother. 1994 Nov;38(11):2623-7. doi: 10.1128/AAC.38.11.2623.
5
Neisseria gonorrhoeae acquires mutations in analogous regions of gyrA and parC in fluoroquinolone-resistant isolates.
Mol Microbiol. 1994 Oct;14(2):371-80. doi: 10.1111/j.1365-2958.1994.tb01297.x.
6
Analysis of gyrA and grlA mutations in stepwise-selected ciprofloxacin-resistant mutants of Staphylococcus aureus.
Antimicrob Agents Chemother. 1995 Jul;39(7):1554-8. doi: 10.1128/AAC.39.7.1554.
8
DNA topoisomerases.
Annu Rev Biochem. 1981;50:879-910. doi: 10.1146/annurev.bi.50.070181.004311.
9
Synthesis and antibacterial activities of optically active ofloxacin.
Antimicrob Agents Chemother. 1986 Jan;29(1):163-4. doi: 10.1128/AAC.29.1.163.
10
In vitro activity of DR-3355, an optically active ofloxacin.
Antimicrob Agents Chemother. 1988 Sep;32(9):1336-40. doi: 10.1128/AAC.32.9.1336.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验