Suppr超能文献

竞争风险分析中实际死因误分类的影响。

The effects of misclassification of the actual cause of death in competing risks analysis.

作者信息

Ebrahimi N

机构信息

Division of Statistics, Northern Illinois University, DeKalb 60115, USA.

出版信息

Stat Med. 1996 Jul 30;15(14):1557-66. doi: 10.1002/(SICI)1097-0258(19960730)15:14<1557::AID-SIM286>3.0.CO;2-Q.

Abstract

The problem of competing risks analysis arises often in public health, demography, actuarial science, industrial reliability applications, and experiments in medical therapeutics. In the classical competing risks scenario one models the risks with a vector (T = (T1, ..., Tk) of non-negative random variables that represents the potential times to death of k risks. One cannot see T directly but sees instead Y = min (T1, ..., Tk) and the actual cause of death. The major difficulty with this analysis is the requirement for the expert to specify the single cause of death that, in fact, may not be the actual cause. This paper addresses competing risks analysis for the situations where one observes Y and the set of several possible causes of death specified by the expert. Many times there are several causes that act together and realistically it is impossible for the expert to assign a death to a single cause. In particular, I provide a likelihood for parametric competing risks analysis when the actual cause of death is possibly misclassified. The data include time to death, Y, and a set of possible causes of death. If misclassification probabilities are unknown, I propose a Baysian analysis based on a prior distribution for the parameters of interest and for the misclassification probabilities.

摘要

竞争风险分析问题在公共卫生、人口统计学、精算科学、工业可靠性应用以及医学治疗实验中经常出现。在经典的竞争风险情形下,人们用一个非负随机变量向量(T=(T_1,\cdots,T_k))对风险进行建模,该向量表示(k)种风险的潜在死亡时间。人们无法直接观测到(T),而是观测到(Y = \min(T_1,\cdots,T_k))以及实际死亡原因。这种分析的主要困难在于需要专家指定单一的死亡原因,而实际上这可能并非实际原因。本文针对观测到(Y)以及专家指定的几种可能死亡原因集合的情况进行竞争风险分析。很多时候有多种原因共同起作用,实际上专家不可能将死亡归因于单一原因。特别是,当实际死亡原因可能被误分类时,我给出了参数化竞争风险分析的似然函数。数据包括死亡时间(Y)以及一组可能的死亡原因。如果误分类概率未知,我基于感兴趣参数和误分类概率的先验分布提出一种贝叶斯分析方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验