Department of Applied Mathematics and Computer Science, Ghent University, Ghent, Belgium.
Epidemiology. 2012 Mar;23(2):194-202. doi: 10.1097/EDE.0b013e3182454cad.
While epidemiologic and clinical research often aims to analyze predictors of specific endpoints, time-to-the-specific-event analysis can be hampered by problems with cause ascertainment. Under typical assumptions of competing risks analysis (and missing-data settings), we correct the cause-specific proportional hazards analysis when information on the reliability of diagnosis is available. Our method avoids bias in effect estimates at low cost in variance, thus offering a perspective for better-informed decision making. The ratio of different cause-specific hazards can be estimated flexibly for this purpose. It thus complements an all-cause analysis. In a sensitivity analysis, this approach can reveal the likely extent and direction of the bias of a standard cause-specific analysis when the diagnosis is suspect. These 2 uses are illustrated in a randomized vaccine trial and an epidemiologic cohort study, respectively.
虽然流行病学和临床研究通常旨在分析特定终点的预测因素,但由于病因确定方面的问题,对特定事件的时间分析可能会受到阻碍。在竞争风险分析的典型假设(和缺失数据设置)下,当有关诊断可靠性的信息可用时,我们会纠正特定病因的比例风险分析。我们的方法以较低的方差代价避免了效果估计中的偏差,从而为更明智的决策提供了一种视角。为此,可以灵活地估计不同病因特异性危害的比例。因此,它补充了全因分析。在敏感性分析中,当诊断可疑时,这种方法可以揭示标准病因特异性分析的偏差的可能程度和方向。这两种用途分别在一项随机疫苗试验和一项流行病学队列研究中得到了说明。