Shaaban S A, Bobkova E V, Chudzik D M, Hall B D
Department of Genetics, University of Washington, Seattle 98195-7360, USA.
Mol Cell Biol. 1996 Nov;16(11):6468-76. doi: 10.1128/MCB.16.11.6468.
We have studied the in vitro elongation and termination properties of several yeast RNA polymerase III (pol III) mutant enzymes that have altered in vivo termination behavior (S. A. Shaaban, B. M. Krupp, and B. D. Hall, Mol. Cell. Biol. 15:1467-1478, 1995). The pattern of completed-transcript release was also characterized for three of the mutant enzymes. The mutations studied occupy amino acid regions 300 to 325, 455 to 521, and 1061 to 1082 of the RET1 protein (P. James, S. Whelen, and B. D. Hall, J. Biol. Chem. 266:5616-5624, 1991), the second largest subunit of yeast RNA pol III. In general, mutant enzymes which have increased termination require a longer time to traverse a template gene than does wild-type pol III; the converse holds true for most decreased-termination mutants. One increased-termination mutant (K310T I324K) was faster and two reduced termination mutants (K512N and T455I E478K) were slower than the wild-type enzyme. In most cases, these changes in overall elongation kinetics can be accounted for by a correspondingly longer or shorter dwell time at pause sites within the SUP4 tRNA(Tyr) gene. Of the three mutants analyzed for RNA release, one (T455I) was similar to the wild type while the two others (T455I E478K and E478K) bound the completed SUP4 pre-tRNA more avidly. The results of this study support the view that termination is a multistep pathway in which several different regions of the RET1 protein are actively involved. Region 300 to 325 likely affects a step involved in RNA release, while the Rif homology region, amino acids 455 to 521, interacts with the nascent RNA 3' end. The dual effects of several mutations on both elongation kinetics and RNA release suggest that the protein motifs affected by them have multiple roles in the steps leading to transcription termination.
我们研究了几种酵母RNA聚合酶III(pol III)突变酶的体外延伸和终止特性,这些酶在体内的终止行为发生了改变(S. A. Shaaban、B. M. Krupp和B. D. Hall,《分子细胞生物学》15:1467 - 1478,1995年)。还对其中三种突变酶的完整转录本释放模式进行了表征。所研究的突变位于酵母RNA pol III第二大亚基RET1蛋白(P. James、S. Whelen和B. D. Hall,《生物化学杂志》266:5616 - 5624,1991年)的氨基酸区域300至325、455至521和1061至1082。一般来说,与野生型pol III相比,终止增加的突变酶穿越模板基因所需的时间更长;大多数终止减少的突变酶则相反。一种终止增加的突变体(K31O T I324K)比野生型酶更快,而两种终止减少的突变体(K512N和T455I E478K)比野生型酶更慢。在大多数情况下,总体延伸动力学的这些变化可以通过在SUP4 tRNA(Tyr)基因内的暂停位点停留相应更长或更短的时间来解释。在分析的三种用于RNA释放的突变体中,一种(T455I)与野生型相似,而另外两种(T455I E478K和E478K)与完整的SUP4前体tRNA结合更紧密。这项研究的结果支持这样一种观点,即终止是一个多步骤途径,其中RET1蛋白的几个不同区域都积极参与。区域300至325可能影响RNA释放所涉及的一个步骤,而Rif同源区域,即氨基酸455至521,与新生RNA的3'端相互作用。几种突变对延伸动力学和RNA释放的双重影响表明,受它们影响的蛋白质基序在导致转录终止的步骤中具有多种作用。