Boudraa A E, Champier J, Cinotti L, Bordet J C, Lavenne F, Mallet J J
Laboratoire de Biophysique, Faculté de Médecine Alexis Carrel, Lyon, France.
Comput Med Imaging Graph. 1996 Jan-Feb;20(1):31-41. doi: 10.1016/0895-6111(96)00025-0.
In this study, we investigate the application of the fuzzy clustering to the anatomical localization and quantitation of brain lesions in Positron Emission Tomography (PET) images. The method is based on the Fuzzy C-Means (FCM) algorithm. The algorithm segments the PET image data points into a given number of clusters. Each cluster is an homogeneous region of the brain (e.g. tumor). A feature vector is assigned to a cluster which has the highest membership degree. Having the label affected by the FCM algorithm to a cluster, one may easily compute the corresponding spatial localization, area and perimeter. Studies concerning the evolution of a tumor after different treatments in two patients are presented.
在本研究中,我们探讨了模糊聚类在正电子发射断层扫描(PET)图像中脑病变的解剖定位和定量分析中的应用。该方法基于模糊C均值(FCM)算法。该算法将PET图像数据点分割成给定数量的聚类。每个聚类都是大脑的一个同质区域(例如肿瘤)。将一个特征向量分配给具有最高隶属度的聚类。通过FCM算法为聚类赋予标签后,人们可以轻松计算出相应的空间定位、面积和周长。本文还介绍了两名患者在接受不同治疗后肿瘤演变的研究情况。