Specht C M, Shucard D W
Department of Neurology, State University of New York at Buffalo, NY, USA.
Electroencephalogr Clin Neurophysiol. 1996 Sep;100(5):462-71.
Fast habituation (FH) is defined as a general reduction in long-latency, vertex-recorded, averaged auditory evoked potential (AEP) amplitude that occurs in response to the second of a pair of acoustic stimuli. Our laboratory has been studying FH in a variety of human populations with different paradigms and has interpreted it to be a measure of neural attentional mechanism(s) and/or resource allocation related to the processing of cognitive information. We have also reported an analogous phenomenon in the rat. In the present investigation, we examined the relationship between FH (viz., averaged AEP component amplitude decrement) and the single-trial latency variability of the AEP peaks comprising that component. Specifically, AEPs were obtained to 60 paired-tone stimuli from unanesthetized and restrained albino rats previously implanted with chronic skull electrodes. Using a template-matching algorithm similar to that used by Michalewski et al. (Electroenceph. clin. Neurophysiol., 1986,65:59-71), the latency variability for each animal was computed for the N1 and P2 peaks of the single-trial AEPs that were used to compose the averaged wave form. Findings indicated that (a) there was no difference in single-trial latency variability for these peaks either within or across tones, and (b) there was no relationship between single-trial latency variability for either the N1 or the P2 peaks and the overall peak-to-peak amplitude (N1-P2) of the averaged wave from in response to the second tone. Thus, FH of the N1-P2(i.e. Peak 2) amplitude in the rat is not due to an increase in latency variability across tones.