Ayene I S, Koch C J, Krisch R E
Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
Radiat Res. 1996 Nov;146(5):501-9.
Most in vitro studies of the modification of radiation damage to DNA by oxygen and reduced thiol compounds have excluded non-thiol .OH scavengers. However, the non-thiol .OH scavengers are known to be very effective radiation protectors and are present in cells in near molar concentrations. To better relate data obtained from an in vitro system to data at the intracellular level, we have carried out simultaneous measurements of single and double-strand breaks (SSBs and DSBs) in a model system using closed-circular supercoiled SV40 DNA (25 micrograms/ml) in aqueous solution. Observations were made in the presence and absence of oxygen and over wide concentration ranges encompassing intracellular conditions of both glutathione (GSH), the dominant soluble intracellular reduced thiol compound, and glycerol, a widely used poly-alcohol non-thiol .OH scavenger. The dose-response curves for both SSBs and DSBs in either air or nitrogen are predominantly linear when 75 or 750 mM glycerol is combined with 0-20 mM GSH. Glutathione together with glycerol shows a concentration-dependent preferential protection in nitrogen compared to air against radiation-induced SSBs and DSBs, qualitatively similar to our prior observations at comparable concentrations of GSH alone (Ayene et al., Radiat. Res. 144, 1-8, 1995). With GSH alone, we observed peak oxygen enhancement ratios (OERs) of 6.5 and 8.0 for SSBs and DSBs, respectively, at 5 mM GSH. In contrast, we observed previously that glycerol alone showed a preferential protection against radiation-induced SSBs and DSBs in air compared to nitrogen (Ayene et al., Radiat. Res. 142, 133-143, 1995). In the presence of 750 mM glycerol, approximately equivalent to the total effective concentration of non-thiol .OH scavengers in the cell, we now observe that the OER for radiation-induced DSBs increases from 1.2 at 0.5 mM GSH to 3.3 at 5.0 mM. This roughly parallels the dependence of the OER on [GSH] reported for cell survival. A possible mechanism for the lower OER at higher .OH scavenging efficiency is discussed.
大多数关于氧气和还原型硫醇化合物对DNA辐射损伤修饰作用的体外研究都排除了非硫醇类·OH清除剂。然而,已知非硫醇类·OH清除剂是非常有效的辐射防护剂,且在细胞内以接近摩尔浓度的水平存在。为了更好地将体外系统获得的数据与细胞内水平的数据相关联,我们在一个模型系统中进行了单链和双链断裂(SSB和DSB)的同步测量,该模型系统使用了水溶液中的闭环超螺旋SV40 DNA(25微克/毫升)。在有氧和无氧条件下,以及涵盖细胞内主要可溶性还原型硫醇化合物谷胱甘肽(GSH)和广泛使用的多元醇非硫醇类·OH清除剂甘油的细胞内条件的宽浓度范围内进行了观察。当75或750 mM甘油与0 - 20 mM GSH联合使用时,无论是在空气中还是在氮气中,SSB和DSB的剂量 - 反应曲线主要呈线性。与空气中相比,谷胱甘肽与甘油一起在氮气中对辐射诱导的SSB和DSB表现出浓度依赖性的优先保护作用,在定性上与我们之前在单独使用可比浓度GSH时的观察结果相似(Ayene等人,《辐射研究》144,1 - 8,1995)。单独使用GSH时,在5 mM GSH下,我们分别观察到SSB和DSB的峰值氧增强比(OER)为6.5和8.0。相比之下,我们之前观察到单独使用甘油时,与氮气相比,在空气中对辐射诱导的SSB和DSB表现出优先保护作用(Ayene等人,《辐射研究》142,133 - 143,1995)。在存在750 mM甘油(大约相当于细胞中非硫醇类·OH清除剂的总有效浓度)的情况下,我们现在观察到辐射诱导DSB的OER从0.5 mM GSH时的1.2增加到5.0 mM时的3.3。这大致与报道的细胞存活的OER对[GSH]的依赖性平行。讨论了在较高·OH清除效率下较低OER的一种可能机制。