Dupont G, Pontes J, Goldbeter A
Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de Bruxelles, Belgium.
Am J Physiol. 1996 Oct;271(4 Pt 1):C1390-9. doi: 10.1152/ajpcell.1996.271.4.C1390.
Excitation-contraction coupling in cardiomyocytes is known to rely on the Ca(2+)-induced Ca2+ release mechanism. This autoamplification process is also very apparent when voltage-clamped or Ca(2+)-overloaded myocytes exhibit fast-propagating Ca2+ waves. Although most of the fronts are planar, some adopt a spiral shape, revealing additional characteristics about the excitability and structure of the cardiac cell (P. Lipp and E. Niggli, Biophys. J. 65: 2272-2276, 1993: J. Engel, M. Fechner, A. Sowerby, S. Finch, and A. Stier, Biophys. J. 66: 1756-1762, 1994). Using a previously developed model for Ca2+ oscillations and waves (A. Goldbeter, G. Dupont, and M.J. Berridge, Proc. Natl. Acad. Sci. USA 87: 1461-1465, 1990; G. Dupont and A. Goldbeter, Biophys. J. 67: 2191-2204, 1994), we study by numerical simulations different conditions in which spiral Ca2+ waves can occur as a result of the spatial heterogeneity created by the nucleus in a system with geometry resembling that of a myocyte. A region of the cell lacking Ca2+ pools, acting as an obstacle able to break the propagation of planar waves, suffices to initiate a spiral wave; however, this region must be properly placed with respect to the pacemaker. An obstacle behaving as a barrier to diffusion is also able to create the initial bending that can lead to the spiral wave. We study how the occurrence of spiral Ca2+ waves in single cardiomyocytes is influenced by factors such as the stimulus location and the position, shape, and dimensions of the obstacle to planar wave propagation.
已知心肌细胞中的兴奋 - 收缩偶联依赖于钙诱导的钙释放机制。当电压钳制或钙超载的心肌细胞表现出快速传播的钙波时,这种自放大过程也非常明显。尽管大多数波前是平面的,但有些呈现螺旋形状,揭示了心肌细胞兴奋性和结构的其他特征(P. Lipp和E. Niggli,《生物物理杂志》65:2272 - 2276,1993;J. Engel、M. Fechner、A. Sowerby、S. Finch和A. Stier,《生物物理杂志》66:1756 - 1762,1994)。使用先前开发的钙振荡和波的模型(A. Goldbeter、G. Dupont和M.J. Berridge,《美国国家科学院院刊》87:1461 - 1465,1990;G. Dupont和A. Goldbeter,《生物物理杂志》67:2191 - 2204,1994),我们通过数值模拟研究了不同条件,在这些条件下,由于细胞核在类似于心肌细胞几何形状的系统中产生的空间异质性,螺旋钙波可能会出现。细胞中缺乏钙库的区域,作为能够阻断平面波传播的障碍物,足以引发螺旋波;然而,该区域必须相对于起搏器正确放置。作为扩散屏障的障碍物也能够产生可导致螺旋波的初始弯曲。我们研究了单个心肌细胞中螺旋钙波的出现如何受到刺激位置以及平面波传播障碍物的位置、形状和尺寸等因素的影响。