Suppr超能文献

Kinetics of oxygen consumption during maximal exercise at different muscle temperatures.

作者信息

Ferretti G, Binzoni T, Hulo N, Kayser B, Thomet J M, Cerretelli P

机构信息

Departement de Physiologie, Centre Medical Universitaire, Geneve, Suisse.

出版信息

Respir Physiol. 1995 Dec;102(2-3):261-8. doi: 10.1016/0034-5687(95)00071-2.

Abstract

The aim of this study was to test at maximal exercise the hypothesis of the temperature-dependence of the kinetics of O2 consumption (VO2), which predicts a greater O2 deficit as muscle temperature is decreased. Six male subjects underwent 3 min exercise bouts at the minimum power eliciting maximum O2 consumption (VO2max), at normal temperature (A) and after cooling the thigh muscles by water immersion (C). Breath-by-breath VO2 was measured together with muscle blood flow (Qm), blood lactate accumulation ("early lactate", eLa), heart rate and muscle temperature (Tm). The O2 deficit was calculated by standard procedure. Net VO2max was 2.92 +/- 0.85 (SD) and 3.19 +/- 0.71 l center dot min-1 in C and A respectively (P < 0.05). Correspondingly, maximum power was 20 W lower in C than in A. At exercise start, Tm was 35.0 +/- 1.2 and 27.5 +/- 1.8 degrees C in A and C respectively. O2 deficit was 2.25 +/- 0.53 and 3.05 +/- 1.12 l in A and C respectively. The corresponding eLa was 7.7 +/- 2.5 and 13.8 +/- 2.5 mM, (P < 0.05) while Qm was 376 +/- 92 and 290 +/- 50 ml center dot kg-1 center dot min-1 (P < 0.05) in A and C, respectively. The eLa increase in C is associated with an impaired muscle blood flow and decreased muscle O2 unloading, and does not completely explain the greater O2 deficit in C. The unexplained fraction of the latter is perhaps accounted for by a greater net alactic O2 deficit, in agreement with a temperature-dependent decrease of the velocity constants of oxidative reactions, as suggested by the tested hypothesis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验