Suppr超能文献

Glycation mediated crosslinking between alpha-crystallin and MP26 in intact lens membranes.

作者信息

Prabhakaram M, Katz M L, Ortwerth B J

机构信息

Mason Eye Institute, University of Missouri, Columbia 65212, USA.

出版信息

Mech Ageing Dev. 1996 Oct 4;91(1):65-78. doi: 10.1016/0047-6374(96)01781-2.

Abstract

With advancing age, progressive crosslinking occurs between lens crystallin proteins and other lenticular components. This crosslinking may be involved in the development of senile cataracts. Experiments were conducted to determine whether non-enzymatic glycation could be involved in the crosslinking between lens alpha-crystallin and MP26, an abundant lens fiber cell membrane intrinsic protein. In vitro crosslinking of alpha-crystallin and MP26 of bovine lens membranes was observed in presence of two degradation products of ascorbic acid (ASA), dehydroascorbic acid (DHA) and threose. Alkali-washed bovine lens membranes, isolated after glycation with DHA and threose, contained both alpha-crystallin and MP26, as determined by immunoblot and double immunocytochemical labeling studies. In contrast, membranes incubated without these glycating compounds contained only MP26. SDS-PAGE analysis of [125I] alpha-crystallin incubated with lens membranes in the presence of threose showed a higher amount of radioactivity in high molecular weight aggregates than in the aggregates produced when alpha-crystallin and threose were incubated without membranes. A slot-blot immunoassay of alkali-washed human lens membranes showed a higher amount of covalently bound alpha-crystallin in aged, cataractous or diabetic lens membranes than was present in lens membranes from young normal donors. Based on the in vitro results, we hypothesize that non-enzymatic glycation is one of the vivo mechanisms in the crosslinking of alpha-crystallin to lens membrane proteins, such as MP26. This crosslinking may contribute significantly to the development of age-related and diabetic cataracts.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验