Suppr超能文献

生存数据分析中缺失的死亡原因信息。

Missing cause of death information in the analysis of survival data.

作者信息

Andersen J, Goetghebeur E, Ryan L

机构信息

Dana Farber Cancer Institute, Boston, MA, USA.

出版信息

Stat Med. 1996 Oct 30;15(20):2191-201. doi: 10.1002/(SICI)1097-0258(19961030)15:20<2191::AID-SIM358>3.0.CO;2-D.

Abstract

Goetghebeur and Ryan proposed a method for proportional hazards analyses of competing risks failure-time data when the failure type is missing for some cases. This paper evaluates the properties of the method using data from a clinical trial in Hodgkin's disease. We generated several patterns of missingness in the cause of death in 'pseudo-studies' derived from the study database. We found that the proposed method provided regression coefficients and inferences that were less biased than those from other methods over an increasing percentage of missingness in the failure type when missingness is random, when it depends on an important covariate, when it depends on failure type, and when it depends on follow-up time. We present suggestions for study design with planned missingness in the failure type.

摘要

戈特赫布尔和瑞安提出了一种方法,用于在某些病例的失败类型缺失时,对竞争风险失效时间数据进行比例风险分析。本文使用来自一项霍奇金病临床试验的数据评估了该方法的特性。我们在从研究数据库派生的“虚拟研究”中生成了几种死亡原因缺失模式。我们发现,当缺失是随机的、取决于一个重要协变量、取决于失败类型以及取决于随访时间时,在失败类型中缺失百分比不断增加的情况下,所提出的方法提供的回归系数和推断比其他方法的偏差更小。我们针对失败类型存在计划缺失的研究设计提出了建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验