Russell L B, Russell W L
Biology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-8077, USA.
Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13072-7. doi: 10.1073/pnas.93.23.13072.
The specific-locus test (SLT) detects new mutants among mice heterozygous for seven recessive visible markers. Spontaneous mutations can be manifested not only as singleton whole-body mutants in controls (for which we report new data), but as mosaics-either visible (manifesting mottled coat color) in the scored generation (G2) or masked, among the wild-type parental generation (G1). Masked G1 mosaics reveal themselves by producing clusters of whole-body mutants in G2. We provide evidence that most, if not all, mosaics detected in the SLT (both radiation and control progenies) result from a single-strand spontaneous mutation subsequent to the last premeiotic mitosis and before the first postmeiotic one of a parental genome-the "perigametic interval." Such events in the genomes of the G1 and Gzero results, respectively, in visible and masked 50:50 mosaics. Per cell cycle, the spontaneous mutation rate in the perigametic interval is much higher than that in pregamete mitotic divisions. A clearly different locus spectrum further supports the hypothesis of different origin, and casts further doubt on the validity of the doubling-dose risk-estimation method. Because mosaics cannot have arisen in mitotic germ cells, and are not induced by radiation exposure in the perigametic interval, they should not be included in calculations of radiation-induced germ-line mutation rates. For per-generation calculations, inclusion of mosaics yields a spontaneous frequency 1.7 times that calculated from singletons alone for mutations contributed by males; including both sexes, the multiple is 2.2.
特异性位点测试(SLT)可在携带七个隐性可见标记的杂合子小鼠中检测新的突变体。自发突变不仅可表现为对照组中的单例全身突变体(我们报告了相关新数据),还可表现为嵌合体——在评分代(G2)中为可见的(表现为斑驳的毛色),或在野生型亲代代(G1)中为隐蔽的。隐蔽的G1嵌合体通过在G2中产生全身突变体簇而显现出来。我们提供的证据表明,在SLT中检测到的大多数(如果不是全部)嵌合体(辐射和对照后代)是由亲代基因组最后一次减数分裂前有丝分裂之后、第一次减数分裂后有丝分裂之前的单链自发突变产生的——“配子发生间隔期”。G1和G0基因组中的此类事件分别导致可见的和隐蔽的50:50嵌合体。每个细胞周期,配子发生间隔期的自发突变率远高于配子前有丝分裂分裂期的突变率。明显不同的位点谱进一步支持了不同起源的假设,并对加倍剂量风险估计方法的有效性提出了进一步质疑。由于嵌合体不可能在有丝分裂生殖细胞中产生,并且在配子发生间隔期不受辐射暴露诱导,因此在计算辐射诱导的种系突变率时不应将其包括在内。对于每代计算,纳入嵌合体后,雄性贡献的突变的自发频率是仅根据单例计算得出的频率的1.7倍;包括两性在内,倍数为2.2。